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A Social Problem

This was a question posed to RAND researchers in 1971:
“Suppose you were an advisor to the head of the KGB. Sup-
pose you are given the assignment of designing a system for the
surveillance of all citizens and visitors within the boundaries of
the USSR. The system is not to be too obtrusive or obvious. What
would be your decision?”

“I think one of the big things that we need to do, is we need to
get away from true-name payments on the Internet. The credit
card payment system is one of the worst things that happened
for the user, in terms of being able to divorce their access from
their identity.” –Edward Snowden, IETF 93 (2015)
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Banks have Problems, too!

3D secure (“verified by visa”) is a nightmare:
▶ Complicated process
▶ Shifts liability to

consumer
▶ Significant latency
▶ Can refuse valid

requests
▶ Legal vendors

excluded
▶ No privacy for buyers
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The Bank’s Problem

▶ Global tech companies push oligopolies
▶ Privacy and federated finance are at risk
▶ Economic sovereignty is in danger



Predicting the Future

▶ Google and Apple will be your bank and run your payment system
▶ They can target advertising based on your purchase history, location

and your ability to pay
▶ They will provide more usable, faster and broadly available payment

solutions; our federated banking system will be history
▶ After they dominate the payment sector, they will start to charge

fees befitting their oligopoly size
▶ Competitors and vendors not aligning with their corporate “values”

will be excluded by policy and go bankrupt
▶ The imperium will have another major tool for its financial warfare



Central Bank Digital Currency?

Speech by Augustin Carstens, Bank of International Settlements
(October 2020) on the difference between Central Bank Digital
Currencies and cash.

Central Bank Digital Currency vs. Cash
https://www.youtube.com/watch?v=R_E4Uu7ycqE (10’2020)

https://www.youtube.com/watch?v=R_E4Uu7ycqE


The Emergency Act of Canada

Speech by Premier Kenney, Alberta, February 2022.

The Emergency Act of Canada
https://www.youtube.com/watch?v=NehMAj492SA (2’2022)

https://www.youtube.com/watch?v=NehMAj492SA


GNU Taler: Introduction



GNU Taler [1, 3, 2]

Digital cash, made socially
responsible.

Privacy-Preserving, Practical, Taxable, Free Software, Efficient



What is Taler?
https://taler.net/en/features.html

Taler is

▶ a Free/Libre software payment system infrastructure project
▶ ... with a surrounding software ecosystem
▶ ... and a company (Taler Systems S.A.) and community that wants to

deploy it as widely as possible.

However, Taler is
▶ not a currency or speculative asset
▶ not a long-term store of value
▶ not a network or instance of a system
▶ not based on proof-of-work or proof-of-stake

https://taler.net/en/features.html


Design principles
https://taler.net/en/principles.html

GNU Taler must ...
1. ... be implemented as free software.
2. ... protect the privacy of buyers.
3. ... enable the state to tax income and crack down on illegal business

activities.
4. ... prevent payment fraud.
5. ... only disclose the minimal amount of information necessary.
6. ... be usable.
7. ... be efficient.
8. ... avoid single points of failure.
9. ... foster competition.



Taler Overview
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Architecture of Taler



Consumer Impact of Taler

▶ Convenient: pay with one click instantly –– in Euro, Dollar, Yen or
Bitcoin

▶ Friction-free security: Payments do not require sign-up, login or
multi-factor authentication

▶ Privacy-preserving: payment requires/shares no personal
information

▶ Bank account: not required



Merchant Impact of Taler

▶ Instant clearance: one-click transactions and instant clearance at
par

▶ Easy & compliant: GDPR & PCI-DSS compliance-free and without
any effort

▶ Major profit increase: efficient protocol + no fraud = extremely low
costs

▶ 1-click checkout: without Amazon and without false positives in
fraud detection



Usability of Taler

https://demo.taler.net/

1. Install browser extension.
2. Visit the bank.demo.taler.net to withdraw coins.
3. Visit the shop.demo.taler.net to spend coins.

https://demo.taler.net/


Protocol Basics



BFH Bachelor’s thesis video



How does it work?

We use a few ancient constructions:
▶ Cryptographic hash function (1989)
▶ Blind signature (1983)
▶ Schnorr signature (1989)
▶ Diffie-Hellman key exchange (1976) Deterministic signatures (1977)
▶ Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.



Definition: Taxability

We say Taler is taxable because:
▶ Merchant’s income is visible from deposits.
▶ Hash of contract is part of deposit data.
▶ State can trace income and enforce taxation.

Limitations:
▶ withdraw loophole
▶ sharing coins among family and friends
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Exchange setup: Create a
denomination key (RSA)

1. Generate random primes
p,q.

2. Compute n := pq,
ϕ(n) = (p− 1)(q− 1)

3. Pick small e < ϕ(n) such
that d := e−1 mod ϕ(n)
exists.

4. Publish public key (e,n).

(p,q)



Merchant: Create a signing key
(EdDSA)

▶ Generate random number
m mod o as private key

▶ Compute public key
M := mG

m

M

Capability:
m⇒ M



Customer: Create a planchet
(EdDSA)

▶ Generate random number c mod o as
private key

▶ Compute public key C := cG
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Customer: Blind planchet (RSA)

1. Obtain public key (e,n)
2. Compute f := FDH(C),

f < n.
3. Generate random blinding

factor b ∈ Zn

4. Transmit f ′ := fbe mod n

b
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Exchange: Blind sign (RSA)

1. Receive f ′.
2. Compute s′ := f ′d mod n.
3. Send signature s′.
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b
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Customer: Unblind coin (RSA)

1. Receive s′.
2. Compute s := s′b−1 mod n
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Customer: Build shopping cart

www

transmit



Merchant: Propose contract (EdDSA)

1. Complete proposal D.
2. Send D, EdDSAm(D)

M

Customer

m

transmit



Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C, EdDSAc(D)
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Merchant and Exchange: Verify coin
(RSA)

se ?≡ FDH(C) mod n X
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?⇔

The exchange does not only verify the signature, but also checks that the
coin was not double-spent.

Taler is an online payment system.
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Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!
▶ Denomination key represents value of a coin.
▶ Exchange may offer various denominations.
▶ Wallet may not have exact change!
▶ Must be able to pay given sufficient total funds.

Key goals:
▶ maintain unlinkability
▶ maintain taxability of transactions

Method:
▶ Contract can specify to pay partial value of a coin.
▶ Allow wallet to obtain unlinkable change.
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Unique Signatures

▶ Some public key operations depend
on a nonce or “random” value
▶ Ex.: DSA/ECDSA (signing)
+ same plaintext, different ciphertext
- security may break on nonce-reuse

▶ Generating the nonce
deterministically by hashing all
inputs (see also: Fiat-Shamir
transformation) can make these
algorithms deterministic
▶ Ex.: EdDSA

▶ If only one form of a valid signature
exists and the verifier can check this,
a signature is unique.
▶ Ex.: RSA, Verifiable Random Func.

Unique signatures:

=



Verifiable Random Functions

Micali, Rabin, & Vadhan (1999) proposed verifiable random functions.

Let M be some input.
▶ (sk,pk) := VRFkeygen()

▶ Verifier picks M
▶ (v,p) := VRFsign(M, sk)
▶ v is deterministic, unpredictable and high-entropy for any M and sk,

and (v,p) can only be computed with sk
▶ VRFverify(M,pk, v,p) returns true only if v was computed correctly
▶ sk cannot be derived from M, pk, v and p



Straw-man solution

Given partially spent private coin key cold:

1. Pick random cnew mod o private
key

2. Compute Cnew := cnewG public key
3. Pick random bnew

4. Compute fnew := FDH(Cnew),
m < n.

5. Transmit f ′new := fnewbe
new mod n

... and sign request for change with cold.

b
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cnew
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Customer: Transfer setup (UNISIG)

Given partially spent private coin key cold:

1. Let Cold := coldG (as before)
2. Create random nonce t
3. Compute unique signature

X := UNISIGcold(t)
4. Derive cnew and bnew from X using

HKDF
5. Compute Cnew := cnewG
6. Compute fnew := FDH(Cnew)

7. Transmit f ′new := fnewbe
new

tcold

cnew bnew

b

Exchange
transmit



Cut-and-Choose

t1

(X1)

cold

cnew,1 bnew,1

b

Exchange
transmit

t2

(X2)

cold

cnew,2 bnew,2

b

Exchange
transmit

t3

(X3)

cold

cnew,3 bnew,3

b

Exchange
transmit



Exchange: Choose!

Exchange sends back random γ ∈ {1,2,3} to the customer.



Customer: Reveal

1. If γ = 1, send ⟨t2,X2⟩, ⟨t3,X3⟩ to exchange
2. If γ = 2, send ⟨t1,X1⟩, ⟨t3,X3⟩ to exchange
3. If γ = 3, send ⟨t1,X1⟩, ⟨t2,X2⟩ to exchange



Exchange: Verify (γ = 2)

t1Cold

cnew,1 bnew,1

b

t3Cold

cnew,3 bnew,3

b



Exchange: Blind sign change (RSA)

1. Take f ′new,γ .
2. Compute

s′ := f ′dnew,γ mod n.
3. Return signature s′.

b

b

Customer

transmit



Customer: Unblind change (RSA)

1. Receive s′.
2. Compute s := s′b−1

new,γ mod n.

bnew,γ
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Exchange: Allow linking change

Given Cold

return tγ and

s := s′b−1
new,γ mod n.

Cold

tγ
b

Customer

link
lin

k



Customer: Link (threat!)

1. Have cold.
2. Obtain Tγ , s from exchange
3. Compute Xγ = UNISIGcold(tγ)
4. Derive cnew,γ and bnew,γ from

Xγ

5. Unblind s := s′b−1
new,γ mod n

tγ

Exchange

b (Xγ)
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VRF vs. Dold’19 with Diffie-Hellman
(ECDH)

VRF/unique signatures are slightly stronger than required!
1. Create private keys c, t mod o
2. Define C = cG
3. Define T = tG
4. Compute DH

cT = c(tG) = t(cG) = tC
5. Sign T with EdDSA: DH is

unique, with EdDSA we have a
signature, t allows verifier to
check!

t

C T

c



Transfer setup with ECDH-based
Refresh

Given partially spent private coin key cold:

1. Let Cold := coldG (as before)
2. Create random private transfer key

t mod o
3. Compute T := tG
4. Compute

X := cold(tG) = t(coldG) = tCold

5. Derive cnew and bnew from X
6. Compute Cnew := cnewG
7. Compute fnew := FDH(Cnew)

8. Transmit f ′new := fnewbe
new

t

C T

cold

cnew bnew

b

Exchange
transmit



Refresh protocol summary

▶ Customer asks exchange to convert old coin to new coin
▶ Protocol ensures new coins can be recovered from old coin
⇒ New coins are owned by the same entity!

Thus, the refresh protocol allows:
▶ To give unlinkable change.
▶ To give refunds to an anonymous customer.
▶ To expire old keys and migrate coins to new ones.
▶ To handle protocol aborts.

Transactions via refresh are equivalent to sharing a wallet.



Component Zoo



The Taler Software Ecosystem:
Overview
https://taler.net/en/docs.html

Taler is based on modular components that work together to provide a
complete payment system:
▶ Exchange: Service provider for digital cash

▶ Core exchange software (cryptography, database)
▶ Air-gapped key management, real-time auditing
▶ libeufin: Modular integration with banking systems
▶ challenger: KYC service with OAuth 2.0 API

▶ Merchant: Integration service for existing businesses
▶ Core merchant backend software (cryptography, database)
▶ Back-office interface for staff
▶ Frontend integration (E-commerce, Point-of-sale)

▶ Wallet: Consumer-controlled applications for e-cash
▶ Multi-platform wallet software (for browsers & mobile phones)
▶ Wallet backup storage providers (sync & Anastasis)

https://taler.net/en/docs.html


Taler Exchange

The Exchange is the core logic of the payment system.
▶ One exchange at minimum must be operated per currency
▶ Offers a REST API for merchants and customers
▶ Uses several helper processes for configuration and to interact with

RTGS and cryptography
▶ KYC support via OAuth 2.0, KycAID or Persona APIs



Taler Merchant

The Merchant is the software run by merchants to accept
GNU Taler payments.
▶ REST API for integration

with e-commerce
▶ SPA provides Web

interface for
administration

▶ Features include:
▶ Multi-tenant support
▶ Refunds
▶ Templates
▶ Webhooks
▶ Inventory management

(optional)



Taler Wallet

The Wallet is the software run by consumers to store their digital cash
and authorize transactions.

▶ wallet-core is the logic shared by all
interfaces

▶ Works on Android, F-Droid, iOS,
Ubuntu Touch, WebExtension
(Chrome, Chromium, Firefox, etc.)

▶ Features include:
▶ Multi-currency support
▶ Wallet-to-wallet payments (NFC or

QR code)
▶ CRDT-like data model



Taler Auditor

The Auditor is the software run by an independent auditor to validate
the operation of an Exchange.
▶ REST API for additional report inputs by merchants (optional)
▶ Secure database replication logic



libeufin-nexus

libeufin-nexus allows Taler components to interact with a core banking
system. It:
▶ provides an implementation of the Wire Gateway for the exchange
▶ supports EBICS 2.5 and 3.0
▶ other APIs such as FinTS or PSD2-style XS2A APIs can be added

without requiring changes to the Exchange
▶ was tested with GLS Bank (DE) and Postfinance (CH) accounts and

real EUR/CHF



libeufin-bank

libeufin-bank implements a standalone bank with a Web interface. It:
▶ provides the Taler Core Bank API for RESTful online banking using a

Web interface (with multi-factor authentication)
▶ includes a Taler Wire Gateway for the exchange
▶ offers the Taler Bank Integration API to allow wallets to easily

withdraw digital cash
▶ optionally provides the Taler Conversion Info API for currency

conversion between fiat and regional currencies
▶ optionally integrates with libeufin-nexus to interact with a core

banking system



Challenger

Challenger allows clients to obtain validated address (KYC) data about
users:
▶ Customizable Web-based process for address validation
▶ Can validate phone numbers, e-mail addresses or physical mailing

addresses
▶ Provides an exchange-compatible OAuth 2.0 API



Depolymerization

Depolymerization is a bridge between GNU Taler and blockchains,
making Taler a layer 2 system for crypto-currencies (like Lightning).
▶ provides an implementation of the Wire Gateway for the exchange
▶ Works on top of Bitcoin and Ethereum crypto-currencies, with the

DLTs as the “RTGS”
▶ Provides same API to Exchange as libeufin-nexus



Point-of-Sale App for Android

▶ Allows merchant to generate
orders against Taler backend
and display QR code to enable
customer to pay in person

▶ Patterned after ViewTouch
restaurant UI



Payment plugins

▶ Pretix, ticket sales
system

▶ Joomla!, an
e-commerce
platform

▶ WooCommerce, an
e-commerce solution
on top of WordPress

▶ DrupalCommerce, an
e-commerce solution
on top of Drupal



Offline payments



Digitaler Euro — Offline?

Many central banks today demand offline capabilities for CBDCs.

Feb 2017 [16]

Mar, Jun 2020 [21, 22]
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A Scenario
God is offline, but customer pays online



Typical Payment Process
All equivalent: Twint, PayPal, AliPay, PayTM

(C) Twint, 2023



Secure Payment ...
Everything green?



Exploit “Code”
Programming optional



“Customers” love Twint ...
Daily non-business for shops



Partially Offline Payments with GNU
Taler [8]

PoS

PoS key
PoS ID

Customer

Digital
Wallet

Merchant Backend

PoS key
PoS ID

PoS ID

Amount

optionaloptional

Amount

optionaloptional

PoS ID, [Amount]?

Contract

Payment
OTP(PoS key) OTP(PoS key)

OTP code

OTP code



Programmable money: Age restrictions [12]



Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of Subsidiarity is violated
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Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers
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Age restriction design for GNU Taler

Design and implementation of an age restriction scheme
with the following goals:

1. It ties age restriction to the ability to pay (not to ID’s)
2. maintains anonymity of buyers
3. maintains unlinkability of transactions
4. aligns with principle of subsidiartiy
5. is practical and efficient



Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts
are under control of eligible
adults/guardians.

▶ Guardians commit to an
maximum age

▶ Minors attest their adequate age
▶ Merchants verify the attestations
▶ Minors derive age commitments

from existing ones
▶ Exchanges compare the derived

age commitments
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Formal Function Signatures

Searching for functions

with the following signatures

Commit

: (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.
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Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i,

Q i+
1
)

Simple use of Derive() and Compare() is
problematic.

▶ Calling Derive() iteratively generates
sequence (Q0,Q1, . . . ) of commitments.

▶ Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken
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Achieving Unlinkability

Define cut&choose protocol DeriveCompareκ, using Derive() and
Compare().

Sketch:
1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E
4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi, βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))
and evaluates Compare(Q0,Qi, βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.
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Achieving Unlinkability

With DeriveCompareκ

▶ E learns nothing about Qγ ,
▶ trusts outcome with κ−1

κ certainty,
▶ i.e. C has 1

κ chance to cheat.

Note: Still need Derive and Compare to be defined.



Refined scheme
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Achieving Unlinkability

DeriveCompareκ : O× P× Ω→ {0,1}
DeriveCompareκ(Q,P, ω) =
C: 1. for all i ∈ {1, . . . , κ} : (Qi,Pi, βi)← Derive(Q,P, ω + i)

2. h← H
(
H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ)

)
3. send (Q,h) to E

E : 4. save (Q,h)

5. γ
$←− {1, . . . , κ}

6. send γ to C
C: 7. h′

γ ← H(Qγ , βγ)

8. Eγ ←
[
(Q1, β1), . . . , (Qγ−1, βγ−1),⊥, (Qγ+1, βγ+1), . . . , (Qκ, βκ)

]
9. send (Eγ ,h′

γ) to E
E : 10. for all i ∈ {1, . . . , κ} \ {γ} : hi ← H(Eγ [i])

11. if h
?
̸= H(h1∥ . . . ∥hγ−1∥h′

γ∥hγ+1∥ . . . ∥hκ−1) return 0

12. for all i ∈ {1, . . . , κ} \ {γ}: if 0 ?
= Compare(Q,Qi, βi) return 0

13. return 1



Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must first meet basic requirements:
▶ Existence of attestations
▶ Efficacy of attestations
▶ Derivability of commitments and attestations



Basic Requirements
Formal Details

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =

{
T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q, T) =

1, if ∃
P∈P

: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

etc.



Requirements
Details

Derivability of commitments and proofs:
Let

a ∈ NM, ω0, ω1 ∈ Ω

(Q0,P0)← Commit(a, ω0),

(Q1,P1, β)← Derive(Q0,P0, ω1).

We require

Compare(Q0,Q1, β) = 1

and for all n ≤ a:

Verify(n,Q1,Attest(n,Q1,P1)) = Verify(n,Q0,Attest(n,Q0,P0))



Security Requirements

Candidate functions must also meet security requirements. Those are
defined via security games:
▶ Game: Age disclosure by commitment or attestation
↔ Requirement: Non-disclosure of age
▶ Game: Forging attestation
↔ Requirement: Unforgeability of minimum age
▶ Game: Distinguishing derived commitments and attestations
↔ Requirement: Unlinkability of commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.
Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.



Security Requirements
Simplified Example

Game GFA
A (λ)—Forging an attest:

1. (a, ω) $←− NM−1 × Ω
2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA

A (λ) = 1
]
≤ ϵ(λ)



Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}

1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1,p1), . . . , (qM,pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1,p1), . . . , (qa,pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . ,qM) is the Commitment,
▶ P⃗a := (p1, . . . ,pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩
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Instantiation with ECDSA
Definitions of Attest and Verify

Child has
▶ ordered public-keys Q⃗ = (q1, . . . ,qM),
▶ (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets
▶ ordered public-keys Q⃗ = (q1, . . . ,qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.



Instantiation with ECDSA
Definitions of Attest and Verify

Child has
▶ ordered public-keys Q⃗ = (q1, . . . ,qM),
▶ (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets
▶ ordered public-keys Q⃗ = (q1, . . . ,qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.



Instantiation with ECDSA
Definitions of Attest and Verify

Child has
▶ ordered public-keys Q⃗ = (q1, . . . ,qM),
▶ (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets
▶ ordered public-keys Q⃗ = (q1, . . . ,qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.



Instantiation with ECDSA
Definitions of Attest and Verify

Child has
▶ ordered public-keys Q⃗ = (q1, . . . ,qM),
▶ (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets
▶ ordered public-keys Q⃗ = (q1, . . . ,qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.



Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . ,qM) and P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗G = β ∗ (pi ∗G) = β ∗ qi

β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . ,qM), Q⃗′ = (q′1, . . . ,q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′

1, . . . ,q
′
M)
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Instantiation with ECDSA

Functions (Commit, Attest, Verify, Derive, Compare)
as defined in the instantiation with ECDSA

▶ meet the basic requirements,
▶ also meet all security requirements.

Proofs by security reduction, details are in the paper.



Instantiation with ECDSA
Full definitions

CommitE,[·]g (a, ω) :=
〈 =Q⃗︷ ︸︸ ︷
(q1, . . . ,qM),

=P⃗, length M︷ ︸︸ ︷
(p1, . . . ,pa,⊥, . . . ,⊥)

〉
AttestE,H(b, Q⃗, P⃗) :=

Tb := SigE,H
(
b, P⃗[b]

)
if P⃗[b]

?
̸=⊥

⊥ otherwise

VerifyE,H(b, Q⃗, T) := VerE,H(b, Q⃗[b], T)

DeriveE,[·]g (Q⃗, P⃗, ω) :=
〈
(β ∗ q1, . . . , β ∗ qM), (βp1, . . . , βpa,⊥, . . . ,⊥), β

〉
with β := [ω]g and multiplication βpi modulo g

CompareE(Q⃗, Q⃗′, β) :=

{
1 if (β ∗ q1, . . . , β ∗ qM)

?
= (q′

1, . . . ,q′
M)

0 otherwise



Reminder: GNU Taler Fundamentals

E

C M
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sh

purchase

deposit
▶ Coins are public-/private key-pairs (Cp,cs).
▶ Exchange blindly signs FDH(Cp) with denomination key dp
▶ Verification:

1 ?
= SigCheck

(
FDH(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)



Integration with GNU Taler
Binding age restriction to coins

To bind an age commitment Q to a coin Cp, instead of signing FDH(Cp), E
now blindly signs

FDH(Cp,H(Q))

Verfication of a coin now requires H(Q), too:

1 ?
= SigCheck

(
FDH(Cp,H(Q)),Dp, σp

)



Integration with GNU Taler
Integrated schemes
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Instantiation with Edx25519

Paper also formally defines another signature scheme: Edx25519.

▶ Scheme already in use in GNUnet,
▶ based on EdDSA (Bernstein et al.),
▶ generates compatible signatures and
▶ allows for key derivation from both, private and public keys,

independently.

Current implementation of age restriction in GNU Taler uses Edx25519.



Age Restrictions based on KYC

Subsidiarity requires bank accounts being owned by adults.
▶ Scheme can be adapted to case where minors have bank accounts

▶ Assumption: banks provide minimum age information during bank
transactions.

▶ Child and Exchange execute a variant of the cut&choose protocol.



Discussion

▶ Our solution can in principle be used with any token-based payment
scheme

▶ GNU Taler best aligned with our design goals (security, privacy and
efficiency)

▶ Subsidiarity requires bank accounts being owned by adults
▶ Scheme can be adapted to case where minors have bank accounts

▶ Assumption: banks provide minimum age information during bank
transactions.

▶ Child and Exchange execute a variant of the cut&choose protocol.

▶ Our scheme offers an alternative to identity management systems
(IMS)



Related Work

▶ Current privacy-perserving systems all based on attribute-based
credentials (Koning et al., Schanzenbach et al., Camenisch et al., Au
et al.)

▶ Attribute-based approach lacks support:
▶ Complex for consumers and retailers
▶ Requires trusted third authority

▶ Other approaches tie age-restriction to ability to pay ("debit cards for
kids")
▶ Advantage: mandatory to payment process
▶ Not privacy friendly



Conclusion

Age restriction is a technical, ethical and legal challenge.
Existing solutions are
▶ without strong protection of privacy or
▶ based on identity management systems (IMS)

Our scheme offers a solution that is
▶ based on subsidiarity
▶ privacy preserving
▶ efficient
▶ an alternative to IMS



Future Work & Conclusion



Use Case: Journalism

Today:
▶ Corporate structure
▶ Advertising primary revenue
▶ Tracking readers critical for business success
▶ Journalism and marketing hard to distinguish

With GNU Taler:
▶ One-click micropayments per article
▶ Hosting requires no expertise
▶ Reader-funded reporting separated from marketing
▶ Readers can remain anonymous
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Taler: Project Status
https://docs.taler.net/

▶ Cryptographic protocols and core exchange component are stable
▶ Pilot project at Bern University of Applied Sciences cafeteria
▶ Netzbon (regional currency) in Basel launched
▶ Taler Operations AG live Swiss-wide
▶ Internal alpha deployment with GLS Bank (Germany)
▶ Internal alpha deployment with Magnet Bank (Hungary)

https://docs.taler.net/


Competitor comparison

Cash Bitcoin Zerocoin Creditcard GNU Taler
Online −−− ++ ++ + +++
Offline +++ −− −− + ++
Trans. cost + −−− −−− − ++
Speed + −−− −−− o ++
Taxation − −− −−− +++ +++
Payer-anon ++ o ++ −−− +++
Payee-anon ++ o ++ −−− −−−
Security − o o −− ++
Conversion +++ −−− −−− +++ +++
Libre − +++ +++ − − − +++



Other ongoing developments

▶ Privacy-preserving auctions (trading, currency exchange)
(oezguer@taler.net)

▶ Hardware and software support for embedded systems
(mikolai@taler.net)

▶ Tax-deductable receipts for donations to charities (donau.git)
▶ Unlinkable anonymous subscriptions and discount tokens

(ivan@taler.net)
▶ Support for illiterate and innumerate users1 (marc@taler.net)

1Background: https://myoralvillage.org/

https://myoralvillage.org/


Open Challanges

▶ Try to explain this to lawyers and AML staff of banks
▶ What are convincing arguments for citizens to switch?
▶ How to address anti-competitive cash-back from card payments?
▶ . . .



How to support?

Join: https://lists.gnu.org/mailman/listinfo/taler

Discuss: https://ich.taler.net/

Develop: https://bugs.taler.net/, https://git.taler.net/
Apply: https://nlnet.nl/propose, https://nlnet.nl/taler
Translate: https://weblate.taler.net/, translation-volunteer@taler.net
Integrate: https://docs.taler.net/

Donate: https://gnunet.org/ev

Partner: https://taler-systems.com/

https://lists.gnu.org/mailman/listinfo/taler
https://ich.taler.net/
https://bugs.taler.net/
https://git.taler.net/
https://nlnet.nl/propose
https://nlnet.nl/taler
https://weblate.taler.net/
translation-volunteer@taler.net
https://docs.taler.net/
https://gnunet.org/ev
https://taler-systems.com/


Conclusion

What can we do?

▶ Suffer mass-surveillance enabled by credit card oligopolies with high
fees, and

▶ Engage in arms race with deliberately unregulatable blockchains

OR

▶ Establish free software alternative balancing social goals!
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