
The Hyper Text Transfer Protocol (HTTP)

Christian Grothoff

20.10.2017 & 03.11.2017

The Hyper Text Transfer Protocol (HTTP)

▶ Initially standardized in RFC 2616

▶ HTTP/0.9 (1990), HTTP/1.0 (1996), HTTP/1.1 (1999),
HTTP/2 (2016)

▶ Runs over TCP (port 80) or as HTTPS over TLS (port 443)

Uniform Resource Locators (URLs)

http://www.example.com:80/path?key=value#anchor

PROTOCOL://HOST:PORT/PATH?QUERY#FRAGMENT

Anatomy of an HTTP request

HTTP 1.x Request Format

GET / HTTP/1.0

Key1: value1

Key2: value2

Key3: value3

value3 may be continued here

Key4: value4

▶ Each line SHOULD be terminated by CRLF, but MAY be
terminated only by CR or LF.

▶ The header ends with an empty line by itself.

▶ HTTP does not specify a maximum header length

Exercise 1: HTTP/1.0, GET

$ t e l n e t g r o t h o f f . o rg 80
GET / HTTP/1 .0

HTTP Methods (or verbs)

GET is just one HTTP method. Other common HTTP/1.0
methods include:

▶ HEAD

▶ PUT

▶ POST

▶ OPTIONS

▶ PUT

▶ DELETE

▶ TRACE

▶ CONNECT

HTTP Methods: Safety and Idempotence

Method Description Idempotent Safe

GET Fetch resource ✓ ✓

HEAD Fetch header only ✓ ✓

PUT Store entity ✓ ✗

POST Accept entity as subordinate ✗ ✗

OPTIONS Return supported HTTP meth-
ods

✓ ✓

DELETE Delete resource ✓ ✗

PATCH Change resource ✗ ✗

TRACE Echo request back to client ✓ ✓

CONNECT Convert connection to tunnel

Exercise 2: HTTP/1.0 HEAD

$ t e l n e t g r o t h o f f . o rg 80
HEAD / HTTP/1 .0

▶ What happens if you use “HTTP/1.1” instead of
“HTTP/1.0”?

HTTP Responses

A HTTP response generally consists of three parts:

1. HTTP Status code line (version, numeric status code, human
readable status code)

2. HTTP (response) headers, followed by empty line

3. HTTP response body

HTTP Status Codes

The numeric range of the HTTP status code is already meaningful:

1. Informational 1xx: Indicate a provisional response

2. Successful 2xx: Indicate that the client request was successful

3. Redirection 3xx: Indicates that further action is needed

4. Client Error 4xx Indicates when the client seems to have erred

5. Internal Server Error 5xx: Indicates cases in which the server
is aware that it has erred

Common HTTP Status Codes

100 Continue

200 Ok

301 Moved Permanently

304 Not Modified

400 Bad Request

401 Authentication Required

402 Payment Required

403 Forbidden

404 Not Found

500 Internal Server Error

Exercise 3: HTTP/1.1

$ t e l n e t g r o t h o f f . o rg 80
GET / HTTP/1 .1
Host : g r o t h o f f . o rg

Multiple HTTP requests

serverclient
open

close

open

open
close

close

Traditional (HTTP/1.0)

serverclient
open

close

With Keep-Alive (HTTP/1.1)

Multiple HTTP requests

serverclient
open

close

open

open
close

close

Traditional (HTTP/1.0)

serverclient
open

close

With Keep-Alive (HTTP/1.1)

Exercise 4: HTTP/1.1, Connection: close

GET / HTTP/1.1

Host: grothoff.org

Connection: close

Exercise 5: HTTP/1.0, Connection: Keap-alive

GET / HTTP/1.0

Connection: Keep-alive

HTTP/1.1 pipelining

serverclient serverclient
open

close

open

close
�

m
e

no pipelining pipelining

HTTP Headers

HTTP headers are used in many ways:

▶ control the connection (Keep-alive)

▶ control caching

▶ provide meta data (content-length, content-type,
content-encoding)

▶ request and provide authentication

HTTP knows four types of headers:

▶ General header: can be used in both request and response

▶ Request header: only applicable to request messages

▶ Response header: only applicable to response messages

▶ Entity header: define meta-information about the body

HTTP 1.x Response Format

HTTP/1.1 200 OK

Server: some advertisement

Date: Sun, 31 Aug 1999 24:00:00 GMT

Content-Type: text/html

Content-Length: 11

Connection: close

Hello World

All of the above headers are technically optional.

HTTP and Mobile Systems?

▶ HTTP(S) is the new IP — tunnel traffic over HTTP
▶ HTTP + HTML are a fast and portable way to create a GUI
▶ Full-blown HTTP Servers (Apache, etc.) are often overkill
▶ Extending Apache only natural with P-languages

Need a lightweight way to create HTTP servers!

GNU libmicrohttpd

▶ Free software (GNU LGPL or GPL + eCoS)

▶ Fully HTTP/1.0 and HTTP/1.1 compliant

▶ Supports all common HTTP features

▶ Just HTTP(S) server, small footprint
▶ Makes limited assumptions about event handling:

▶ External select/poll loop
▶ Internal select/poll loop
▶ One thread per connection
▶ Thread pool

MHD: Security

▶ Optional support for HTTPS, full X.509 support

▶ HTTP basic and digest authentication

▶ Access to client certificates

▶ Ability to selectively bind sockets

▶ Limiting # connections (overall, per IP), custom timeouts

▶ Limit memory consumption per connection

▶ Did very well in three independent external security audits

MHD: Performance

▶ No busy waiting, ever

▶ Zero copy, wherever possible

▶ Stream processing (GET, POST, PUT)

▶ Minimize malloc, handle all errors

▶ No re-inventing strchr, strcmp, etc.

▶ Clean C code, no code duplication

MHD: Scales up and down!

▶ Library binary can be as small as 32k
▶ We reportedly have users on systems with 50 Mhz processors

with HTTPS
▶ We have users working with MHD on systems with 64 kb

RAM

“I also ran oprofile on the system while streaming about 7gbps to

(simulated) ipads and while ramping up 1000s of streams (which causes

high rate of HTTP requests to read the Apple HLS playlists).

libmicrohttpd barely registers as cpu usage.” – MHD user

Applications using MHD

▶ GNUnet, P4P Portal

▶ Gnome Music Player Client, Kiwix, XMBC, OpenVAS

▶ Psensor, Disk Nukem, Flat8, Fawkes, Conky, CallHome

▶ OpenDIAS, Techne, Cables communication project

▶ Open Lightning Architecture, OpenZWave, libhttpserver

▶ Plus many non-free applications (such as TVs, surveilance
cameras, network appliances, etc.)

Exercise 6: Install MHD

$ wget h t t p s : // f t p . gnu . org /gnu/ l i bm i c r o h t t p d /\
l i bm i c r o h t t p d −0 .9 . 55 . t a r . gz

$ t a r x v f l i bm i c r o h t t p d −0 .9 . 55 . t a r . gz
$ cd l i bm i c r o h t t p d −0.9 .55
$. / c o n f i g u r e −−p r e f i x=$HOME
$ make i n s t a l l

Exercise 7: Start MHD HTTPD

$ cd doc/ examples /
$ gcc −I$HOME/ i n c l u d e −L$HOME/ l i b \

h e l l o b r ow s e r . c − lm i c r o h t t p d −o h e l l o b r ow s e r
$ export LD LIBRARY PATH=$HOME/ l i b
$. / h e l l o b r ow s e r # in ano the r s h e l l
$ wget −q −O − ht tp : // l o c a l h o s t :8888/

The MHD API

Daemon

Connection

Response

D

*
N

M

RC

a
cce

p
t

queue

create

start

handler-cb

1

*

1

Launching MHD: The code

#i n c l u d e <m i c r o h t t p d . h>

i n t main ()
{

s t r u c t MHD Daemon ∗daemon =
= MHD start daemon (MHD USE AUTO | \

MHD USE INTERNAL POLLING THREAD ,
8888 ,
NULL , NULL ,
&a n s w e r t o c o n n e c t i o n , NULL ,
MHD OPTION END) ;

i f (NULL == daemon)
r e t u r n 1 ;

(v o i d) g e t c h a r () ;
MHD stop daemon (daemon) ;
r e t u r n 0 ;

}

Responding to requests: The code

s t a t i c i n t
a n s w e r t o c o n n e c t i o n (v o i d ∗ c l s ,

s t r u c t MHD Connection ∗ c o n n e c t i o n ,
c o n s t c h a r ∗ u r l , c o n s t c h a r ∗method ,
c o n s t c h a r ∗ v e r s i o n ,
c o n s t c h a r ∗ u p l o a d d a t a , s i z e t ∗ u p l o a d d a t a s i z e ,
v o i d ∗∗ c o n c l s)

{
c o n s t c h a r ∗page

= ”<html><body>H e l l o , b r o w s e r !</body></html>” ;
i n t r e t ;
s t r u c t MHD Response ∗ r e s p o n s e

= M H D c r e a t e r e s p o n s e f r o m b u f f e r (s t r l e n (page) ,
(v o i d ∗) page , MHD RESPMEM PERSISTENT) ;

r e t = MHD queue response (c o n n e c t i o n , MHD HTTP OK,
r e s p o n s e) ;

MHD dest roy response (r e s p o n s e) ;
r e t u r n r e t ;

}

Exercise 8: Setting Response Headers

r e s p o n s e = MHD create response (. . .) ;
MHD add response header (r e s p o n s e ,

MHD HTTP HEADER CONTENT TYPE,
” t e x t / html ”) ;

r e t = MHD queue response (c o n n e c t i o n ,
MHD HTTP OK,
r e s p o n s e) ;

MHD dest roy response (r e s p o n s e) ;

Test it with telnet! Which headers does the response include?

MHD Response Generation

▶ Static buffer in memory

▶ Data stream (known or unknown size)

▶ Data stream with long polling

▶ From file at offset

▶ From file with sendfile()

▶ With custom HTTP headers — and trailers

Exercise 9: sendfile()

i n t f d ;
s t r u c t s t a t s b u f ;

i f (0 != strcmp (method , ”GET”)) r e t u r n MHD NO;
i f ((−1 == (f d = open (” p i c t u r e . png” , O RDONLY))) | |

(0 != f s t a t (fd , &s b u f))) {
i f (f d != −1) c l o s e (f d) ;
r e t u r n r e p o r t e r r o r (c o n n e c t i o n) ;

}
s t r u c t MHD Response ∗ r e s p o n s e =

M H D c r e a t e r e s p o n s e f r o m f d a t o f f s e t (s b u f . s t s i z e ,
fd , 0) ;

MHD add response header (r e s p o n s e ,
” Content−Type” , ” image /png”) ;

r e t = MHD queue response (c o n n e c t i o n , MHD HTTP OK,
r e s p o n s e) ;

Interlude: Benchmarking

Web performance is complex:

▶ number of requests required per Web page in total

▶ parallel TCP connections used by browser

▶ static content vs. dynamic content generation

▶ impact of caching, proxies, network speed

▶ HTTP vs. HTTPS

▶ Use of “Connection: Keep-alive”

▶ Browser HTML parsing and rendering

We will focus on a few simple tools for the server.

Excercise 10: siege

apt-get install siege

$ s i e g e −t5S h t t p : / / g r o t h o f f . o rg /

Transactions: 876 hits

Availability: 100.00 %

Elapsed time: 4.64 secs

Data transferred: 0.17 MB

Response time: 0.01 secs

Transaction rate: 188.79 trans/sec

Throughput: 0.04 MB/sec

Concurrency: 2.22

Successful transactions: 878

Failed transactions: 0

Longest transaction: 0.05

Shortest transaction: 0.00

Excercise 11: Apache Benchmark (ab)

apt-get install apache2-utils

$ ab −c 25 −t5 h t t p : / / g r o t h o f f . o rg /

Time taken for tests: 5.000 seconds

Complete requests: 14096

Failed requests: 0

Non-2xx responses: 14096

Total transferred: 5300096 bytes

HTML transferred: 2607760 bytes

Requests per second: 2819.09 [#/sec] (mean)

Time per request: 8.868 [ms] (mean)

Time per request: 0.355 [ms] (mean, across all concurrent requests)

Transfer rate: 1035.14 [Kbytes/sec] received

Excercise 11: Apache Benchmark (ab)

apt-get install apache2-utils

$ ab −c 25 −t5 h t t p : / / g r o t h o f f . o rg /

Time taken for tests: 5.000 seconds

Complete requests: 14096

Failed requests: 0

Non-2xx responses: 14096

Total transferred: 5300096 bytes

HTML transferred: 2607760 bytes

Requests per second: 2819.09 [#/sec] (mean)

Time per request: 8.868 [ms] (mean)

Time per request: 0.355 [ms] (mean, across all concurrent requests)

Transfer rate: 1035.14 [Kbytes/sec] received

Benchmarking

Lesson learned:

▶ HTTP servers are very fast

▶ You may be benchmarking the client

▶ You may be benchmarking the bandwidth

▶ You may be benchmarking the network latency

Exercise 12: Benchmark your server

▶ top

▶ time BINARY

▶ strace -c BINARY

▶ iotop (requires root)

MHD performance tuning

▶ MHD’s fastest mode is a thread pool with epoll()

▶ You can re-use struct MHD Response objects

▶ You can disable the “Date:” header
(MHD USE SUPPRESS DATE NO CLOCK)

▶ You could run HTTP over a UNIX domain socket

▶ You can enable TCP FASTOPEN (MHD USE TCP FASTOPEN)

▶ You can enable crazy mode (MHD USE TURBO)

▶ You can disable logging (--disable-messages)

... but, in 99.99% of all cases, your bottleneck will be elsewhere
without these!

HTTP/1.1 Responses

▶ Content-Length header defines body length

▶ Content-encoding: chunked provides alternative if length
not known

▶ Otherwise, no keep-alive possible (Connection: close

header implied)

Content-encoding: chunked

RFC 2616, section 3.6.1 defines chunked encoding:

Chunked−Body = ∗ chunk
l a s t −chunk
t r a i l e r
CRLF

chunk = chunk−s i z e [chunk−e x t e n s i o n] CRLF
chunk−data CRLF

chunk−s i z e = 1∗HEX
l a s t −chunk = 1∗(”0”) [chunk−e x t e n s i o n] CRLF
chunk−e x t e n s i o n= ∗(” ; ” chunk−ext−name [”=” chunk−ext−v a l])
chunk−ext−name = token
chunk−ext−v a l = token | quoted−s t r i n g
chunk−data = chunk−s i z e (OCTET)
t r a i l e r = ∗(e n t i t y −h e a d e r CRLF)

Incremental replies with MHD

#i n c l u d e < s t d l i b . h>
s t a t i c s s i z e t c r c (v o i d ∗ c l s , u i n t 6 4 t pos ,

c h a r ∗buf , s i z e t s i z e m a x) {
i f (0 == s i z e m a x) r e t u r n 0 ;
i f (0 == rand () % 1024 ∗ 1024)

r e t u r n MHD CONTENT READER END OF STREAM ;
∗ buf = ’ b ’ ;
r e t u r n 1 ;

}

s t r u c t MHD Response ∗ r e s p o n s e
= M H D c r e a t e r e s p o n s e f r o m c a l l b a c k

(MHD SIZE UNKNOWN,
1024 ,
&crc , NULL , NULL) ;

Exercise 13: Generating incremental replies

Using telnet:

▶ What happens if you use the code above with a
HTTP/1.0-style request?

▶ What happens if you use the code above with a
HTTP/1.1-style request?

Using wget:

▶ What is the output if you use the code above?

▶ What happens on the wire? Use wireshark!

Long polling

HTTP may generate a response incrementally:

▶ With or without chunked encoding

▶ MHD OPTION CONNECTION TIMEOUT and
MHD set connection option (connection,

MHD CONNECTION OPTION TIMEOUT) can control timeout.

▶ MHD ContentReaderCallback can return 0 to indicate “more
available later”

▶ MHD suspend connection() can suspend handling of
network data for a connection.

Request → Response ⇒ Request → Response, [wait, Response]∗,
fin.

HTTP Caching

HTTP response headers control how long a resource is valid:

▶ Cache-control: max-age=3600

▶ Expires: Mon, 31 Aug 2020 00:00:00 GMT

▶ ETag: "727285929572e8a" — assign unique ID to resource

HTTP request headers can be used to inquire if a resource
changed:

▶ If-Modified-Since: Mon, 31 Aug 2000 00:00:00 GMT

▶ If-None-Match: "727285929572e8a"

HTTP Methods & Caching

Method Description Cacheable

GET Fetch resource ✓

HEAD Fetch header only ✓

PUT Store entity ✗

POST Accept entity as subordinate ✓(*)

DELETE Delete resource ✗

PATCH Change resource ✗

TRACE Echo request back to client ✗

CONNECT Convert connection to tunnel ✗

(*) Only if HTTP response includes explicit freshness information.

Cookies

HTTP is a “stateless” protocol. Cookies are a mechanism to add
state.

c o n s t c h a r ∗ v a l u e
= M H D l o o k u p c o n n e c t i o n v a l u e (c o n n e c t i o n ,

MHD COOKIE KIND ,
” key ”) ;

r e s p o n s e = . . . ;
MHD add response header (r e s p o n s e ,

MHD HTTP HEADER SET COOKIE ,
” key=v a l u e ; OPTIONS”) ;

Modify your code to set cookies and print values of received
cookies.

Cookie options

▶ Expires=DATE — if not set, cookies expire at the end of the
session

▶ Domain=DOMAIN — for which (sub)domain does the cookie
apply

▶ Path=PATH — for which URL paths should the cookie be
sent

▶ Secure — only send cookie over HTTPS

▶ HttpOnly — only send cookie over HTTP

▶ SameSite=Strict — do not send along cross-site requests

Range queries

HTTP supports incremental downloads:

GET / HTTP/1.1

Host: grothoff.org

Content-range: 40-42/bytes

206 Partial Content

Content-length: 3

Accept-ranges: bytes

Content-range: 40-42/64

Range queries with MHD

MHD does not (yet) have build-in support, so you need to process
range queries manually:

c o n s t c h a r ∗ r a ng e
= M H D l o o k u p c o n n e c t i o n v a l u e (c o n n e c t i o n ,

MHD HEADER KIND,
MHD HTTP HEADER CONTENT RANGE) ;

r e s p o n s e = . . . ;
MHD add response header (r e s p o n s e ,

MHD HTTP HEADER ACCEPT RANGES,
” b y t e s ”) ;

HTTP/1.x supports body compression

GET / HTTP/1.0

Accept-encoding: gzip,deflate

200 OK

Content-encoding: gzip

Content-length: 42

The content length is that of the compressed body.

Compression in C

#inc l u d e <z l i b . h>
/∗∗
∗ Try to compress a r e s pon s e body . Updates @a buf and @a b u f s i z e .
∗
∗ @param [in , out] buf p o i n t e r to body to compress
∗ @param [in , out] b u f s i z e p o i n t e r to i n i t i a l s i z e o f @a buf
∗ @re tu rn t r u e i f buf was compressed
∗/

i n t body compress (vo id ∗∗buf , s i z e t ∗ b u f s i z e) {
uLongf c b u f s i z e = compressBound (∗ b u f s i z e) ;
By te f ∗ cbu f = ma l l o c (c b u f s i z e) ;
i n t r e t = compress (cbuf , &c b u f s i z e ,

(const Byte f ∗) ∗buf , ∗ b u f s i z e) ;
i f ((Z OK != r e t) | | (c b u f s i z e >= ∗ b u f s i z e)) {

f r e e (cbu f) ; r e t u r n f a l s e ; }
f r e e (∗ buf) ;
∗buf = (vo id ∗) cbu f ;
∗ b u f s i z e = (s i z e t) c b u f s i z e ;
r e t u r n t r u e ;

}

Exercise 14: Add compression support

▶ Add support for compression to your MHD server.

▶ Make sure to check the client supports compression.

▶ You need to link against libz

HTTP Requests: Methods with Bodies in Request

Method Description Body

GET Fetch resource ✗

HEAD Fetch header only ✗

PUT Store entity ✓

POST Accept entity as subordinate ✓

DELETE Delete resource ✗

PATCH Change resource ✓

TRACE Echo request back to client ✗

CONNECT Convert connection to tunnel ✓

100 Continue

Uploading a body may be expensive! HTTP can check if the
HTTP server is willing to handle it first!
POST / HTTP/1.1

Host: grothoff.org

Content-length: 1000

Expect: 100-continue

100 Continue

UPLOAD-BODY

200 Ok

RESPONSE-BODY

POST / HTTP/1.1

Host: grothoff.org

Content-length: 1000

Expect: 100-continue

417 Expectation Failed

ERROR-BODY

100 Continue

Uploading a body may be expensive! HTTP can check if the
HTTP server is willing to handle it first!
POST / HTTP/1.1

Host: grothoff.org

Content-length: 1000

Expect: 100-continue

100 Continue

UPLOAD-BODY

200 Ok

RESPONSE-BODY

POST / HTTP/1.1

Host: grothoff.org

Content-length: 1000

Expect: 100-continue

417 Expectation Failed

ERROR-BODY

MHD and uploads

i n t
a n s w e r t o c o n n e c t i o n (v o i d ∗ c l s ,

s t r u c t MHD Connection ∗ c o n n e c t i o n ,
c o n s t c h a r ∗ u r l ,
c o n s t c h a r ∗method ,
c o n s t c h a r ∗ v e r s i o n ,
c o n s t c h a r ∗ u p l o a d d a t a ,
s i z e t ∗ u p l o a d d a t a s i z e ,
v o i d ∗∗ c o n c l s)

{
}

answer to connection will be called repeatedly!

Exercise 15: Handle uploads

▶ Write an HTTP server with an upload function

▶ Reject uploads larger than 8 MB

Why do many HTTP servers include such a limitation?

HTTP Basic authentication

#d e f i n e DENIED ”<html><body>Go away.</body></html>” ;

c h a r ∗ p a s s = NULL ;
c h a r ∗ u s e r

= M H D b a s i c a u t h g e t u s e r n a m e p a s s w o r d (c o n n e c t i o n ,
&p a s s) ;

i f (! a u t h e n t i c a t i o n o k (u se r , p a s s)) {
r e s p o n s e =

M H D c r e a t e r e s p o n s e f r o m b u f f e r (s t r l e n (DENIED) ,
(v o i d ∗) DENIED ,
MHD RESPMEM PERSISTENT) ;

r e t u r n M H D q u e u e b a s i c a u t h f a i l r e s p o n s e (c o n n e c t i o n ,
”my rea lm ” ,
r e s p o n s e) ;

}

HTTP Digest authentication (Part I)

#d e f i n e MY OPAQUE STR ” 11733 b200778ce33060f ”

c h a r ∗ username
= M H D d i g e s t a u t h g e t u s e r n a m e (c o n n e c t i o n) ;

i f (NULL == username) {
r e s p o n s e

= M H D c r e a t e r e s p o n s e f r o m b u f f e r (s t r l e n (DENIED) ,
DENIED , MHD RESPMEM PERSISTENT) ;

r e t u r n M H D q u e u e a u t h f a i l r e s p o n s e (c o n n e c t i o n ,
”my rea lm ” ,
MY OPAQUE STR,
r e s p o n s e ,
MHD NO) ;

}

HTTP Digest authentication (Part II)

i n t r e t = MHD digest auth check (c o n n e c t i o n , ”my rea lm ” ,
username ,
password ,
3 0 0) ;

i f ((r e t == MHD INVALID NONCE) | |
(r e t == MHD NO))

{
r e s p o n s e

= M H D c r e a t e r e s p o n s e f r o m b u f f e r (s t r l e n (DENIED) ,
DENIED , MHD RESPMEM PERSISTENT) ;

r e t u r n M H D q u e u e a u t h f a i l r e s p o n s e (c o n n e c t i o n ,
”my rea lm ” , MY OPAQUE STR, r e s p o n s e ,
(r e t == MHD INVALID NONCE) ? MHD YES : MHD NO) ;

}

Exercise 16: Digest Authentication

▶ Add support for digest authentication to your MHD server

▶ Observe the traffic with wireshark

▶ Attempt a replay attack using telnet or nc or netcat

HTTP Upgrade

▶ HTTP includes a mechanism to “upgrade” or switch to
another protocol

▶ The client requests the upgrade using the Connection header

▶ The client offers one or more protocols to upgrade to

▶ The server replies with which protocol it wants to use

▶ Afterwards, the underlying TCP stream is used bi-directionally
for the new protocol

HTTP Upgrade: Web Sockets

GET / HTTP/1.0

Host: example.com

Connection: Upgrade

Upgrade: WebSocket

Sec-WebSocket-Key: HEXCODE==

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HEXCODE=

Sec-WebSocket-Protocol: chat

WEBSOCKET V13.

HTTP Upgrade: HTTP/2

GET / HTTP/1.0

Connection: Upgrade

Upgrade: h2c

HTTP/1.1 101 Switching Protocols

Upgrade: h2c

HTTP2 IN CLEARTEXT.

Virtual hosting

▶ There are only ≈ 4 billion IPv4 addresses

▶ We may not have one for every Web server

▶ We also may not have a physical machine for every domain

⇒ Goal: allow one IP to host many HTTP domains

Problem: HTTP server needs to know which domain is requested!

Solution: HTTP/1.1 mandates Host: header to indicate domain.

Virtual hosting

▶ There are only ≈ 4 billion IPv4 addresses

▶ We may not have one for every Web server

▶ We also may not have a physical machine for every domain

⇒ Goal: allow one IP to host many HTTP domains

Problem: HTTP server needs to know which domain is requested!

Solution: HTTP/1.1 mandates Host: header to indicate domain.

Sample Apache configuration (sites-enabled/)

<VirtualHost my-domain.com:80>

ServerAdmin webmaster@my-comain.com

ServerName "my-comain.com"

DocumentRoot /var/www/my-domain/

<Directory />

Options FollowSymLinks

AllowOverride None

</Directory>

<Directory "/var/www/my-domain">

AllowOverride None

Order allow,deny

Allow from all

</Directory>

</VirtualHost>

HTTP servers can act as proxies

This is called a reverse proxy:

<VirtualHost my-domain.com:80>

ProxyPass /foo/ http://localhost:58080/

ProxyPass /bar/ https://localhost:58081/

ProxyPass /bfh/ https://bfh.ch/

ProxyPass /ws/ ws://localhost:4242/

</VirtualHost>

This is in contrast to an HTTP client using a proxy (such as
Squid, Tor or WWWOFFLE).

Exercise 17: Reverse proxy to MHD

▶ Configure an Apache server for your site

▶ Redirect a particular path to your MHD instance

▶ Redirect another (virtual) domain to your MHD instance

Hint: use /etc/hosts to map the IP address(es) if you do not
have sufficient control over DNS!

X.509 Trust Chains

Owner's name

Owner's public key

Issuer's (CA's)
name

Issuer's signature

End-entity Certificate

Root CA's name

Root CA's public key

Root CA's signature

Root Certificate

sign

sign

self-sign

reference

reference

Owner's (CA's) name

Owner's public key

Issuer's (root CA's)
name

Issuer's signature

Intermediate Certificate

TLS 1.3: Full Handshake

TLS 1.3: Abbreviated Handshake

TLS 1.3: 0.5 RTT Handshake

TLS Protocol Stack

HTTP FTP SMTP

TLS

TCP

IP

Record Protocol

Handshake
protocol

Cipher Change
protocol

Alert
protocol

Exercise 18: Enable TLS

▶ Obtain a TLS certificate via the “Let’s encrypt” CA (you need
a global DNS name!):
letsencrypt -D DOMAIN.TLD --standalone certonly # or

letsencrypt -D DOMAIN.TLD --standalone run # may work

▶ Configure your Apache server to use it:
SSLEngine on

SSLProtocol -ALL +TLSv1.2 +TLSv1.1 +TLSv1

SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem

SSLCertificateChainFile /etc/letsencrypt/live/example.com/fullchain.pem

SSLCertificateFile /etc/letsencrypt/live/example.com/cert.pem

▶ Verify your configuration using
https://www.ssllabs.com/ssltest/ and
https://observatory.mozilla.org/

https://www.ssllabs.com/ssltest/
https://observatory.mozilla.org/

HTTP/2

Key changes:

▶ HTTP/1 is stateless. HTTP/2 is stateful.

▶ HTTP/1 is human readable. HTTP/2 is binary.

▶ HTTP/1 is in cleartext. HTTP/2 browsers today require TLS.

▶ HTTP/1 is reactive. HTTP/2 servers can be proactive.

▶ HTTP/1 handled requests in order. HTTP/2 allows out of
order.

▶ HTTP/1 is mature. HTTP/2 was rushed to avoid
fragmentation.

HTTP/2 Push

HOL blocking and prioritization

serverclient
open

close

tim
e

blocked

serverclient
open

close

blocked high priority

Exercise 19: Enable HTTP/2 for Apache

First, enable the HTTP/2 module:

a2enmod http2

Then, enable HTTP/2 for your site:

<VirtualHost *:443>

Protocols h2 http/1.1

ServerAdmin admin@example.com

ServerName examp.e.com

...

</VirtualHost>

Exercise 20: Putting it all together

▶ Configure your site for HTTPS

▶ Enable HTTP/2

▶ Reverse proxy to your MHD HTTP instance

▶ Add Link: headers to add PUSH support:

Link: </assets/styles.css>;rel=preload

Exercise 21: Homework

▶ Use TLS with MHD directly

▶ Try different event loop models for MHD, in particular
external select

▶ Cross compile MHD for ARM CPUs

▶ Implement a RESTful IoT sensor using MHD

▶ Minimize the MHD binary size by setting configure and gcc

options to minimize code size and omit features you do not
require

Future Work (aka Bachelor’s thesis topics!)

▶ Improve usability of MHD API

▶ Improve code coverage of tests via better test harness

RTFL

Copyright (C) 2012-2017 Christian Grothoff

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or

any later version published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

