
Transport Layer Security

Christian Grothoff

Berner Fachhochschule

14.05.2018



TLS is everywhere



TLS versions

1994 SSL v2
1995 SSL v3
1999 TLS v1.0
2006 TLS v1.1
2008 TLS v1.2
2018 TLS v1.3



TLS overview

Session key



TLS Protocol Stack

HTTP FTP SMTP

TLS

TCP

IP

Record Protocol

Handshake
protocol

Cipher Change
protocol

Alert
protocol

Maximum record payload is 16kB.



Why Records?

Why not encrypt data in constant stream as we write to TCP?

I Where would we put the MAC?

I If at the end, we get no integrity until all data is processed!

I Most applications process/display data incrementally!

Records allow us to:

I Break stream into series of records

I Each record carries a MAC

I Receiver can act on record as it arrives!



Why Records?

Why not encrypt data in constant stream as we write to TCP?

I Where would we put the MAC?

I If at the end, we get no integrity until all data is processed!

I Most applications process/display data incrementally!

Records allow us to:

I Break stream into series of records

I Each record carries a MAC

I Receiver can act on record as it arrives!



Attacks on records

Attacker could re-order or replay records!

I Put sequence number into MAC.

Attacker could truncate TCP stream!

I Use record types.

I Have special record type to indicate end of stream.



Attacks on records

Attacker could re-order or replay records!

I Put sequence number into MAC.

Attacker could truncate TCP stream!

I Use record types.

I Have special record type to indicate end of stream.



Attacks on records

Attacker could re-order or replay records!

I Put sequence number into MAC.

Attacker could truncate TCP stream!

I Use record types.

I Have special record type to indicate end of stream.



Protocol and Software

I TLS protocol is way too complex

I Many implementations in use

I Vulnerabilities in protocol design and implementations



Attacks on TLS and implementations

2011 BEAST
2012 CRIME
2013 BREACH, Lucky Thirteen
2014 Heartbleed, BERserk, POODLE
2015 FREAK, Logjam, MACE, RSA-CRT, Mar Mitzvah
2016 SLOTH, DROWN
2017 ROBOT
2018 CVE-2018-0488, CVE-2018-1000151



No news for cryptographers

Rivest: DSA weakness (1992) Playstation 3 broken (2010),
Mining Ps and Qs (2012)

Dobbertin: MD5 weak (1996),
Wang: MD5 collission, SHA1 weak
(2004/2005)

MD5 CA attack (2008), Flame
(2012), SLOTH (2016)

Lenstra: RSA-CRT weakness (1996) RSA-CRT attack (2015)

Bleichenbacher: Million Message at-
tack (1998)

DROWN (2016)

Biehl: Fault attacks on ECC (2000) Invalid curve attacks (2015)

Fluhrer/McGrew: RC4 biases (2000) RC4 TLS attacks (2013-2016),
Bar Mitzvah (2016)

Vaudenay: Padding Oracle (2002) Lucky Thirteen (2013)

Bard: Implicit IV vuln (2004) BEAST (2011)

Bleichenbacher: Signature forgery
(2004)

BERserk (2014), ROBOT
(2017)



Security is hard

”In order to defend against this attack, implementations MUST
ensure that record processing time is essentially the same whether

or not the padding is correct. [...] This leaves a small timing
channel, since MAC performance depends to some extent on the

size of the data fragment, but it is not believed to be large
enough to be exploitable, due to the large block size of existing

MACs and the small size of the timing signal.” (TLS 1.2, RFC
5246, 2008)



Modes

I Many SSL/TLS modes built “authenticted encryption” by
combining authentication and encryption

I Many attacks would have been avoided by using primitive that
implements both in one, such as AES-GCM or
ChaCha20-Poly1305

I Anything using ECB, CBC, CFB, OFB, CTR is likely broken

I GCM needs a nonce ⇒ another major failure mode



Primitives

SSL started with many primitives we now know consider insecure:

I RC4

I SHA1

I MD5

I 1024 bit DH with fixed parameters

I “export” ciphers



Deprecation

Evolution is slow as deprecation blocks connections:

I What percentage of clients is it OK to block?

I What percentage of servers is it OK to block?

I Many middleboxes require insecure versions!

I If old versions are supported, downgrade attacks are possible!



Origins of Complexity

1. We have a version negotiation mechanism

2. Servers have broken TLS implementations on version
negotiation

3. Browsers implement workaround (“protocol dance”)

4. Workaround introduces security issue (downgrade)

5. Workaround for security issue introduced by workaround gets
standardized.



TLS Usability

To use TLS securely, you need at least:

I Secure implementation

I Secure protocol configuration (cipher suite)

I X.509 certificate(s)

I Tell client you support TLS: Strict-Transport-Security
header

I Secure certificate chains against bad CA:
I HTTP Public Key Pinning (HPKP)
I Certificate Patrol
I Certificate Transparency (CT)



Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2018 and our TLS configurations still look like this!



Security by Default?

You wish:

SSLProtocol -SSLv2 -SSLv3 -TLSv1 TLSv1.1 +TLSv1.2

SSLHonorCipherOrder on

SSLCompression off

SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:\

ECDHE-RSA-AES256-GCM-SHA384:ECDH-RSA-AES256-\

GCM-SHA384:ECDH-ECDSA-AES256-GCM-SHA384:ECDH\

-RSA-RC4-SHA:RC4-SHA:TLSv1:!AES128:!3DES:!CA\

MELLIA:!SSLv2:HIGH:MEDIUM:!MD5:!LOW:!EXP:!NUL\

L:!aNULL

It is 2018 and our TLS configurations still look like this!



The Future

TLS 1.3



TLS 1.3

I Attempt to break away from attack-patch-attack-patch design
cycle

I Research community more involved

⇒ Formal security proofs (value?)

I Protocol differs significantly from previous versions

I Still lots of extensions, lots of modes

I Client still begins negotiation with ClientHello



TLS 1.3: Full Handshake



TLS 1.3: Abbreviated Handshake



TLS 1.3: 0.5 RTT Handshake



TLS 1.3

I Also deprecates many insecure ciphers

I Again has downgrade attack problem

I Still uses X.509 certificates



Break



X.509

I TLS servers (and sometimes clients) are identified by public
key

I Public keys are certified by certificate authorities

I X.509 certificates are the format used for certificates

I Any certificate authority can certify keys for any domain



X.509 overview

CA

signs cert

HTTPS
Server

shows certUser



Certificate validation is hard

I BERserk was a catastrophic failure in the certificate validation
of the NSS library (used by Firefox / Chrome)

I Most TLS libraries had a chain validation issue at some point

Let’s assume TLS is correct and correctly implemented...



Certificate validation is hard

I BERserk was a catastrophic failure in the certificate validation
of the NSS library (used by Firefox / Chrome)

I Most TLS libraries had a chain validation issue at some point

Let’s assume TLS is correct and correctly implemented...



CA issues all the time

I June 2013: ANSSI issues certs for Google

I March 2014: India CCA intermediate compromised and issued
certs for Yahoo and Google

I Feb 2015: Superfish / Privdog / Komodia breaking certificate
authentication

I March 2015: Comodo cert for live.fi through
hostmaster@live.fi

I March 2015: Same thing for xs4all

I March 2015: Google found bad certs issued by MCS Holdings
/ CNNICa

I April 2015: Google and Mozilla remove CNNIC



Too many CAs

I There are hundreds of browser-accepted CAs and an unknown
number of subordinate CAs

I Each of them can break TLS security

I It does not matter how good your CA is — the only thing
that matters is the worst CA of them all



CNNIC

I CNNIC issued intermediate certificate to Egyptian company
MCS Holdings

I MCS used it in a Man-in-the-Middle-TLS-Proxy in violation of
policy

I Google and Mozilla kick CNNIC out



Domain Validation via E-Mail

I Domain Validation: CA sends mail to defined aliases (admin,
administrator, webmaster, hostmaster, postmaster, see
Baseline Requirements)

I If you offer E-Mail you must make sure that nobody can
register such an address

I One can argue if this is sane system, but it is documented
(Baseline Requirements)

I live.fi / xs4all.nl issues were their fault



Revocation is broken

I Two revocation mechanisms:
I Certificate Revocation Lists (CRL), and
I Online Certificate Status Protocol (OCSP)

I Browsers used insecure soft-fail mode in the past

I Chrome and Firefox distribute their own blocklists, but they
don’t scale

I OCSP stapling could help, but needs a mechanism to indicate
its use (muststaple draft)



Man in the Middle Proxies

I Superfish: Created a TLS Man in the Middle Proxy, private
key was static and part of the Software (Komodia)

I Privdog: Just disabled TLS verification completely (Privdog is
founded by the CEO of Comodo)

I Several Antiviruses do the same. Not fully broken, but all
decrease the security of TLS

I This is not directly a problem of CAs or TLS



Alternatives: DNSSEC/DANE

DANE will not provide you any security today

It is very uncertain if it will ever do that



DNSSEC — too many pieces

For DNSSEC to work you need:

I A signed root

I A signed Top Level Domain

I A domain broker that supports DNSSEC

I A DNS operator that supports DNSSEC

I A client that verifies DNSSEC

Only if you have all five you have security.



Working DNSSEC deployment is near zero

I DNSSEC propaganda: ”xx % of all TLDs are signed”, ”there
are already XX.XXX signed domains”

I Completely irrelevant statements

I Cryptographic signatures are not worth anything if nobody is
checking them

I Once you enable checking, you find out signatures are invalid

I Even if they are valid today, that may not be true after key
rollover

I Same issue as with TLS: How many users are you willing to
burn?

⇒ Client deployment of DNSSEC is very close to zero



DNSSEC client

I So how exactly does a client verify DNSSEC signatures?
(Most common today: Not at all)

I DNSSEC verification happens in the DNS resolver — but
clients usually do not have full DNS resovlers



DNSSEC client

I Should we trust our providers? (No!)

I Should operating systems ship DNS resolvers?

I Should applications ship their own DNS resolvers?

I Not clear how DNSSEC should be deployed on clients!



So what is DANE?

I Idea of DANE: If we already have a secure DNS through
DNSSEC we can add certificate information to the DNS

I The problem: We do not have working DNSSEC

I Building something on top of something that does not work is
pointless

I Also, to secure DNS, IETF proposed putting DNS-over-TLS

Does anyone see a chicken-and-egg problem here?



TLS and HTTP: HTTP Public Key Pinning (HPKP)

I Webpage sends a header with hashes of public keys for the
browser to pin

I Browser stores these hashes

I Always needs at least two keys - because you need to be able
to change your certificates in the future

I Adds a “Trust on First Use” (ToFU) protection



HTTP Public Key Pinning (HPKP)

I HPKP header:

I max-age=31536000;pin-
sha256=”HD3EpAqgxJWKGiSuuXPyipmL33IwYlwhLUgF1gKYOuc=”;pin-
sha256=”dwUkkREEnv6pEtNJoRzlBHJm3IlUvPhgy0mdYFOM6V8=”;
includeSubDomains; report-uri=”/hpkp.php”

I Browser pins the two hashes for [max-age] seconds

I report-uri is unimplemented today



HPKP deployment

I HPKP is supported by Chrome/Chromium and Firefox

I Needed for deployment: Software change in browsers and
configuration change on servers

I Large webpages have pre-loaded pins in the browsers



HPKP: Only for HTTPS

I One big drawback: It is only for the Web

I As HPKP is implemented via HTTP headers it does not work
on other protocols

I There is a proposal called TACK to do something similar on
the TLS layer



HPKP Warning

HPKP improves confidentiality, but can be dangerous to availability:

I If you loose your keys you may lock out your visitors!

I Needs careful planning of key management.



Certificate Transparency

I Public logs with all certs in them

I Certificate can contain log proof confirming that it has been
added to a log

I When a browser sees a certificate that is not in the log it can
raise alarm



Certificate Transparency

I Certificate Transparency runs in soft-fail mode, it cannot
prevent misuse

I But it makes it hard to use malicious certificates without
being noticed



Free certificates

I StartSSL, free for noncommercial use, 1 year validity

I WoSign, 2 years validity

I Let’s encrypt (EFF, Mozilla), 3 months validity, auto-renewal



HTTP Strict Transport Security (HSTS)

I HSTS tells the browser to mark a page as HTTPS only for a
defined timeframe

I Further prevents stripping attacks

I You can even pre-load your webpage as HTTPS only into
Chrome and Firefox



HSTS attack through NTP

I HSTS protects a page for a defined timeframe

I System time is considered trustworthy, but it is not!

I Delorean-Attack circumvents HSTS with NTP

I NTP provides no security (solutions: tlsdate, openntpd)



Acknowledgements

I Based on materials and inspiration taken from talks by Hanno
Böck



Further reading I

I How broken is TLS?
http://media.ccc.de/browse/conferences/eh2014/

EH2014_-_5744_-_de_-_shack-seminarraum_-_

201404201530_-_wie_kaputt_ist_tls_-_hanno.html

I Google on CNNIC
http://googleonlinesecurity.blogspot.com/2015/03/

maintaining-digital-certificate-security.html

I Mozilla on CNNIC https://blog.mozilla.org/security/

2015/04/02/distrusting-new-cnnic-certificates/

I live.fi bad cert https://technet.microsoft.com/en-us/
library/security/3046310

I xs4all bad cert
https://raymii.org/s/blog/How_I_got_a_valid_SSL_

certificate_for_my_ISPs_main_website.html

http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://media.ccc.de/browse/conferences/eh2014/EH2014_-_5744_-_de_-_shack-seminarraum_-_201404201530_-_wie_kaputt_ist_tls_-_hanno.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://technet.microsoft.com/en-us/library/security/3046310
https://technet.microsoft.com/en-us/library/security/3046310
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html


Further reading II

I OCSP muststaple https://tools.ietf.org/html/

draft-hallambaker-muststaple-00

I Superfish https:

//noncombatant.org/2015/02/21/superfish-round-up/

I Privdog https://blog.hboeck.de/archives/

865-Software-Privdog-worse-than-Superfish.html

I Why not DNS records (Ryan Sleevi)
https://lists.w3.org/Archives/Public/

public-webappsec/2014Dec/0264.html

I DNSSEC is dead (Alex Stamos) http://www.slideshare.

net/astamos/appsec-is-eating-security

I Against DNSSEC (Thomas Ptacek) http:

//sockpuppet.org/blog/2015/01/15/against-dnssec/

I HPKP https://developer.mozilla.org/en-US/docs/

Web/Security/Public_Key_Pinning

https://tools.ietf.org/html/draft-hallambaker-muststaple-00
https://tools.ietf.org/html/draft-hallambaker-muststaple-00
https://noncombatant.org/2015/02/21/superfish-round-up/
https://noncombatant.org/2015/02/21/superfish-round-up/
https://blog.hboeck.de/archives/865-Software-Privdog-worse-than-Superfish.html
https://blog.hboeck.de/archives/865-Software-Privdog-worse-than-Superfish.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Dec/0264.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Dec/0264.html
http://www.slideshare.net/astamos/appsec-is-eating-security
http://www.slideshare.net/astamos/appsec-is-eating-security
http://sockpuppet.org/blog/2015/01/15/against-dnssec/
http://sockpuppet.org/blog/2015/01/15/against-dnssec/
https://developer.mozilla.org/en-US/docs/Web/Security/Public_Key_Pinning
https://developer.mozilla.org/en-US/docs/Web/Security/Public_Key_Pinning


Further reading III
I HPKP draft https://tools.ietf.org/html/

draft-ietf-websec-key-pinning-21

I HPKP script for spki hashes
https://github.com/hannob/hpkp

I Certificate Transparency
http://www.certificate-transparency.org/

I StartSSL https://www.startssl.com/

I Wosign https://wosign.com/

I Let’s encrypt https://letsencrypt.org/

I POODLE bites again https://www.imperialviolet.org/

2014/12/08/poodleagain.html

I TLS 1.2 / RFC 5246
https://www.ietf.org/rfc/rfc5246.txt

I Encrypt-then-MAC / RFC 7366
https://tools.ietf.org/html/rfc7366

https://tools.ietf.org/html/draft-ietf-websec-key-pinning-21
https://tools.ietf.org/html/draft-ietf-websec-key-pinning-21
https://github.com/hannob/hpkp
http://www.certificate-transparency.org/
https://www.startssl.com/
https://wosign.com/
https://letsencrypt.org/
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.ietf.org/rfc/rfc5246.txt
https://tools.ietf.org/html/rfc7366


Further reading IV

I RC4 attacks 2013 http://www.isg.rhul.ac.uk/tls/

I RC4 attacks 2015 IMAP / HTTP Basic Auth
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html

I RC4 Bar Mitzvah attack http:

//www.crypto.com/papers/others/rc4_ksaproc.pdf

I POODLE
https://www.openssl.org/~bodo/ssl-poodle.pdf

I Dancing protocols, POODLEs and other tales from TLS
https:

//blog.hboeck.de/archives/858-Dancing-protocols,

-POODLEs-and-other-tales-from-TLS.html

I BERserk http://www.intelsecurity.com/

advanced-threat-research/berserk.html

I BERserk PoC https://github.com/FiloSottile/BERserk

http://www.isg.rhul.ac.uk/tls/
http://www.isg.rhul.ac.uk/tls/RC4mustdie.html
http://www.crypto.com/papers/others/rc4_ksaproc.pdf
http://www.crypto.com/papers/others/rc4_ksaproc.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
https://blog.hboeck.de/archives/858-Dancing-protocols,-POODLEs-and-other-tales-from-TLS.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
http://www.intelsecurity.com/advanced-threat-research/berserk.html
https://github.com/FiloSottile/BERserk


Further reading V

I Bleichenbacher Signature Forgery 2006
https://www.ietf.org/mail-
archive/web/openpgp/current/msg00999.html

I miTLS - formally verified http://www.mitls.org/

I ocaml-tls https://github.com/mirleft/ocaml-tls

I Quote on gmail TLS performance
https://www.imperialviolet.org/2010/06/25/

overclocking-ssl.html

I SSL Strip
http://www.thoughtcrime.org/software/sslstrip/

I HSTS Preload https://hstspreload.appspot.com/

I Bypassing HTTP Strict Transport Security
https://www.blackhat.com/docs/eu-14/materials/

eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.

pdf

http://www.mitls.org/
https://github.com/mirleft/ocaml-tls
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.thoughtcrime.org/software/sslstrip/
https://hstspreload.appspot.com/
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf


Further reading VI

I Delorean NTP MitM
https://github.com/PentesterES/Delorean

I Ring Learning With Errors / post-quantum key exchange
http:

//www.douglas.stebila.ca/research/papers/bcns15

I SPHINCS / post quantum signatures
http://sphincs.cr.yp.to/

I Qualys SSL Labs Test
https://www.ssllabs.com/ssltest/

https://github.com/PentesterES/Delorean
http://www.douglas.stebila.ca/research/papers/bcns15
http://www.douglas.stebila.ca/research/papers/bcns15
http://sphincs.cr.yp.to/
https://www.ssllabs.com/ssltest/

