The Hyper Text Transfer Protocol (HTTP)

Christian Grothoff

Part |

The Hyper Text Transfer Protocol (HTTP)

» Initially standardized in RFC 2616

> HTTP/0.9 (1990), HTTP/1.0 (1996), HTTP/1.1 (1999),
HTTP/2 (2016)

» Runs over TCP (port 80) or as HTTPS over TLS (port 443)

Uniform Resource Locators (URLs)

http://www.example.com:80/path?key=value#anchor

PROTOCOL://HOST:PORT/PATH?QUERY#FRAGMENT

Anatomy of an HTTP request

The HTTP Request
Establish Send Send
Server Connection First Byte Last Byte
Activity
ISP nd (KB)
Client
AV png Intial Intial HTTP Receive Receive
Lookup Connection Request First Byte Last Byte

HTTP 1.x Request Format

GET / HTTP/1.0
Keyl: valuel
Key2: value2
Key3: value3
value3 may be continued here
Key4: valued

» Each line SHOULD be terminated by CRLF, but MAY be
terminated only by CR or LF.

» The header ends with an empty line by itself.
» HTTP does not specify a maximum header length

Exercise 1: HTTP/1.0, GET

$ telnet grothoff.org 80
GET / HTTP/1.0

HTTP Methods (or verbs)

GET is just one HTTP method. Other common HTTP/1.0
methods include:

> HEAD
PUT
POST
OPTIONS
PUT
DELETE
TRACE
CONNECT

vVvvyVvVvVvVvyYyy

HTTP Methods: Safety and Idempotence

Method \ Description Idempotent \ Safe

GET Fetch resource v v

HEAD Fetch header only v v

PUT Store entity v X

POST Accept entity as subordinate X X

OPTIONS | Return supported HTTP meth- v v
ods

DELETE Delete resource

PATCH Change resource

IR
NS

TRACE Echo request back to client

CONNECT| Convert connection to tunnel

Exercise 2: HTTP/1.0 HEAD

$ telnet grothoff.org 80
HEAD / HTTP/1.0

» What happens if you use "HTTP/1.1" instead of
“HTTP/1.0"7

HTTP Responses

A HTTP response generally consists of three parts:

1. HTTP Status code line (version, numeric status code, human
readable status code)

2. HTTP (response) headers, followed by empty line
3. HTTP response body

HTTP Status Codes

The numeric range of the HT TP status code is already meaningful:

o b=

Informational 1xx: Indicate a provisional response

Successful 2xx: Indicate that the client request was successful
Redirection 3xx: Indicates that further action is needed

Client Error 4xx Indicates when the client seems to have erred

Internal Server Error 5xx: Indicates cases in which the server
is aware that it has erred

Common HTTP Status Codes

100
200
301
304
400
401
402
403
404
500

Continue

Ok

Moved Permanently
Not Modified

Bad Request
Authentication Required
Payment Required
Forbidden

Not Found

Internal Server Error

Exercise 3: HTTP/1.1

$ telnet grothoff.org 80
GET / HTTP/1.1
Host: grothoff.org

Multiple HTTP requests

client server
open —+—

close 4=
open ——

close +~
open -

close 4~
Y \/

Traditional (HTTP/1.0)

Multiple HTTP requests

client server client server
open — open —

close 4=
open ——

close +~
open ——

close 4~
Y \ 4 Y

Traditional (HTTP/1.0) With Keep-Alive (HTTP/1.1)

\
AYAYAY.

close—‘

Exercise 4: HTTP/1.1, Connection: close

GET / HTTP/1.1
Host: grothoff.org
Connection: close

Exercise 5: HTTP /1.0, Connection: Keap-alive

GET / HTTP/1.0
Connection: Keep-alive

HTTP/1.1 pipelining
no pipelining pipelining

client server client server
open — open —

E—
/

close —

AYAYAY.

<
<
<

close =

<
<

HTTP Headers

HTTP headers are used in many ways:
» control the connection (Keep-alive)
» control caching

» provide meta data (content-length, content-type,
content-encoding)

» request and provide authentication
HTTP knows four types of headers:
» General header: can be used in both request and response
» Request header: only applicable to request messages
P> Response header: only applicable to response messages

> Entity header: define meta-information about the body

HTTP 1.x Response Format

HTTP/1.1 200 0K

Server: some advertisement

Date: Sun, 31 Aug 1999 24:00:00 GMT
Content-Type: text/html
Content-Length: 11

Connection: close

Hello World

All of the above headers are technically optional.

HTTP and Mobile Systems?

» HTTP(S) is the new IP — tunnel traffic over HTTP

» HTTP + HTML are a fast and portable way to create a GUI
» Full-blown HTTP Servers (Apache, etc.) are often overkill

» Extending Apache only natural with P-languages

Need a lightweight way to create HT TP servers!

GNU libmicrohttpd

» Free software (GNU LGPL or GPL + eCoS)
» Fully HTTP/1.0 and HTTP/1.1 compliant
» Supports all common HTTP features
>
>

Just HTTP(S) server, small footprint

Makes limited assumptions about event handling:
» External select/poll loop
> Internal select/poll loop

» One thread per connection
» Thread pool

MHD: Security

Optional support for HTTPS, full X.509 support

HTTP basic and digest authentication

Access to client certificates

Ability to selectively bind sockets

Limiting # connections (overall, per IP), custom timeouts

Limit memory consumption per connection

vVvvyVvYVYyyypy

Did very well in three independent external security audits

MHD:

vVvYvyVvVvyVvyy

Performance

No busy waiting, ever

Zero copy, wherever possible

Stream processing (GET, POST, PUT)
Minimize malloc, handle all errors

No re-inventing strchr, strcmp, etc.

Clean C code, no code duplication

MHD: Scales up and down!

» Library binary can be as small as 32k

» We reportedly have users on systems with 50 Mhz processors
with HTTPS

» We have users working with MHD on systems with 64 kb
RAM

“l also ran oprofile on the system while streaming about 7gbps to
(simulated) ipads and while ramping up 1000s of streams (which causes
high rate of HTTP requests to read the Apple HLS playlists).
libmicrohttpd barely registers as cpu usage.” — MHD user

Applications using MHD

vVvyvyVvVvyypy

GNUnet, P4P Portal

Gnome Music Player Client, Kiwix, XMBC, OpenVAS
Psensor, Disk Nukem, Flat8, Fawkes, Conky, CallHome
OpenDIAS, Techne, Cables communication project
Open Lightning Architecture, OpenZWave, libhttpserver

Plus many non-free applications (such as TVs, surveilance
cameras, network appliances, etc.)

Exercise 6: Install MHD

A A A

wget https://ftp.gnu.org/gnu/libmicrohttpd/\
l[ibmicrohttpd —0.9.55.tar.gz

tar xvf libmicrohttpd —0.9.55.tar.gz

cd libmicrohttpd —0.9.55

./ configure —prefix=$HOME

make install

Exercise 7: Start MHD HTTPD

$ cd doc/examples/

$ gcc —ISHOME/include —L$HOME/Iib \
hellobrowser.c —Imicrohttpd —o hellobrowser

$ export LD _LIBRARY_PATH=$HOME/ lib

$./hellobrowser # in another shell

$ wget —q —O — http://localhost:8888/

The MHD API

= -

Launching MHD: The code

#include <microhttpd.h>

int main ()

{

struct MHD_Daemon xdaemon =
= MHD_start_.daemon (MHD_USE.AUTO | \
MHD_USE_INTERNAL_POLLING_THREAD,
8888,
NULL, NULL,
&answer_to_connection , NULL,
MHD_OPTION_END) ;
if (NULL = daemon)
return 1;
(void) getchar ();
MHD _stop_daemon (daemon);
return O;

Responding to requests: The code

static int
answer_to_connection (void xcls,
struct MHD_Connection *xconnection ,
const char *xurl, const char xmethod,
const char xversion ,
const char xupload_data, size_t xupload_data_size,
void *xcon_cls)

const char xpage
= "<html><body>Hello , _browser!</body></html>";
int ret;
struct MHD_Response xresponse
= MHD _create_response_from_buffer (strlen (page),
(void %) page, MHD_RESPMEM_PERSISTENT);
ret = MHD_queue_response (connection, MHDHTTP_OK,
response);
MHD _destroy_response (response);
return ret;

Exercise 8: Setting Response Headers

response = MHD _create_response (...);

MHD _add_response_header (response,
MHD_HTTP_HEADER_CONTENT_TYPE,
"text/html”);

ret = MHD_queue_response (connection ,
MHD_HTTP_OK,
response);

MHD _destroy_response (response);

Test it with telnet! Which headers does the response include?

MHD Response Generation

Static buffer in memory

Data stream (known or unknown size)
Data stream with long polling

From file at offset

From file with sendfile()

With custom HTTP headers — and trailers

Exercise 9: sendfile()

int fd;
struct stat sbuf;

if (0 != strcmp (method, "GET")) return MHDNO;
if ((-1 = (fd = open (" picture.png”, O_RDONLY))) ||
(0 = fstat (fd, &sbuf))) {
if (fd = —1) close (fd);
return report_error (connection);
}
struct MHD_Response xresponse =
MHD _create_response_from_fd_at_offset (sbuf.st_size,
fd, 0);
MHD_add_response_header (response,
" Content—Type”, "image/png”);
ret = MHD_queue_response (connection, MHD_HTTP.OK,
response);

Interlude: Benchmarking

Web performance is complex:

» number of requests required per Web page in total
parallel TCP connections used by browser
static content vs. dynamic content generation
impact of caching, proxies, network speed
HTTP vs. HTTPS

Use of “Connection: Keep-alive”

vVvYyyvyy

» Browser HTML parsing and rendering

We will focus on a few simple tools for the server.

Excercise 10: siege

apt-get install siege
$ siege —t5S http://grothoff.org/

Transactions: 876 hits
Availability: 100.00 %
Elapsed time: 4.64 secs

Data transferred: 0.17 MB
Response time: 0.01 secs
Transaction rate: 188.79 trans/sec
Throughput : 0.04 MB/sec
Concurrency: 2.22

Successful transactions: 878
Failed transactions: 0
Longest transaction: 0.05

Shortest transaction: 0.00

Excercise 11: Apache Benchmark (ab)

apt-get install apache2-utils
$ ab —c 25 —t5 http://grothoff.org/

Excercise 11: Apache Benchmark (ab)

apt-get install apache2-utils
$ ab —c 25 —t5 http://grothoff.org/

Time taken for tests: 5.000 seconds

Complete requests: 14096

Failed requests: 0

Non-2xx responses: 14096

Total transferred: 5300096 bytes

HTML transferred: 2607760 bytes

Requests per second: 2819.09 [#/sec] (mean)

Time per request: 8.868 [ms] (mean)

Time per request: 0.355 [ms] (mean, across all concurrent requests)

Transfer rate: 1035.14 [Kbytes/sec] received

Benchmarking

Lesson learned:
» HTTP servers are very fast
» You may be benchmarking the client
» You may be benchmarking the bandwidth
» You may be benchmarking the network latency

Exercise 12: Benchmark your server

top
time BINARY
strace -c BINARY

iotop (requires root)

vvyyy

MHD performance tuning

» MHD's fastest mode is a thread pool with epoll()

v

You can re-use struct MHD Response objects

You can disable the “Date:” header
(MHD_USE_SUPPRESS_DATE_NO_CLOCK)

You could run HTTP over a UNIX domain socket
You can enable TCP FASTOPEN (MHD_USE_TCP_FASTOPEN)
You can enable crazy mode (MHD_USE_TURBO)

You can disable logging (--disable-messages)

v

vvyyy

... but, in 99.99% of all cases, your bottleneck will be elsewhere
without these!

HTTP/1.1 Responses

» Content-Length header defines body length

> Content-encoding: chunked provides alternative if length
not known

» Otherwise, no keep-alive possible (Connection: close
header implied)

Content-encoding: chunked

RFC 2616, section 3.6.1 defines chunked encoding:

Chunked—Body = xchunk
last —chunk
trailer
CRLF
chunk = chunk—size [chunk—extension] CRLF
chunk—data CRLF
chunk—size = 1xHEX
last —chunk = 1%("0") [chunk—extension] CRLF
chunk—extension= *(";" chunk—ext—name ["=" chunk—ext—val]
chunk—ext—name = token
chunk—ext—val = token | quoted—string
chunk—data = chunk—size (OCTET)

trailer = «(entity —header CRLF)

Incremental replies with MHD

#include <stdlib.h>
static ssize_t crc (void xcls, uint64_t pos,
char xbuf, size_t size_max) {
if (0 = size_max) return 0;
if (0 = rand() % 1024 x 1024)
return MHD_CONTENT_READER_END_OF_STREAM;
*buf = 'b’;
return 1;

struct MHD_Response *xresponse
= MHD_create_response_from_callback
(MHD_SIZE_LUNKNOWN,
1024,
&crc, NULL, NULL);

Exercise 13: Generating incremental replies

Using telnet:

» What happens if you use the code above with a
HTTP/1.0-style request?

» What happens if you use the code above with a
HTTP/1.1-style request?

Using wget:
» What is the output if you use the code above?

» What happens on the wire? Use wireshark!

Long polling

HTTP may generate a response incrementally:
> With or without chunked encoding

» MHD_OPTION_CONNECTION_TIMEQUT and
MHD_set_connection_option (connection,
MHD_CONNECTION_OPTION_TIMEQUT) can control timeout.

» MHD_ContentReaderCallback can return O to indicate “more
available later”

> MHD_suspend_connection() can suspend handling of
network data for a connection.

Request — Response = Request — Response, [wait, Response]*,
fin.

HTTP Caching

HTTP response headers control how long a resource is valid:
» Cache-control: max-age=3600
» Expires: Mon, 31 Aug 2020 00:00:00 GMT
> ETag: "727285929572e8a" — assign unique ID to resource

HTTP request headers can be used to inquire if a resource
changed:

» If-Modified-Since: Mon, 31 Aug 2000 00:00:00 GMT
> If-None-Match: "727285929572e8a"

HTTP Methods & Caching

Method ‘ Description Cacheable
GET Fetch resource

HEAD Fetch header only

PUT Store entity

POST Accept entity as subordinate

DELETE Delete resource

PATCH Change resource

TRACE Echo request back to client
CONNECT | Convert connection to tunnel

xxxx%xx\

(*) Only if HTTP response includes explicit freshness information.

Cookies

HTTP is a “stateless” protocol. Cookies are a mechanism to add
state.

const char xvalue
= MHD_lookup_connection_value (connection,
MHD_COOKIE_KIND,
"key")
response =
MHD _add_ response header (response,
MHD_HTTP_HEADER_SET_COOKIE,
"key=value ;OPTIONS");

Modify your code to set cookies and print values of received
cookies.

Cookie options

v

Expires=DATE — if not set, cookies expire at the end of the
session

Domain=DOMAIN — for which (sub)domain does the cookie
apply

Path=PATH — for which URL paths should the cookie be
sent

Secure — only send cookie over HTTPS
HttpOnly — only send cookie over HTTP

SameSite=Strict — do not send along cross-site requests

Range queries

HTTP supports incremental downloads:

GET / HTTP/1.1
Host: grothoff.org
Content-range: 40-42/bytes

206 Partial Content
Content-length: 3
Accept-ranges: bytes
Content-range: 40-42/64

Range queries with MHD

MHD does not (yet) have build-in support, so you need to process
range queries manually:

const char xrange
= MHD_lookup_connection_value (connection,
MHD_HEADER_KIND,

MHD_HTTP_HEADER_CONTENT_RANGI
response =

MHD _add_ response header (response,
MHD_HTTP_HEADER_ACCEPT_RANGES,
"bytes”);

HTTP/1.x supports body compression

GET / HTTP/1.0
Accept-encoding: gzip,deflate

200 OK
Content-encoding: gzip
Content-length: 42

The content length is that of the compressed body.

Compression in C

#include <zlib.h>
yVers

% Try to compress a response body. Updates @a buf and ©@a buf_size.

*
* @param[in ,out] buf pointer to body to compress
* @param[in,out] buf_size pointer to initial size of ©@a buf
% @return true if buf was compressed
*/
int body_compress (void xxbuf, size_t xbuf_size) {
uLongf cbuf_size = compressBound (xbuf_size);
Bytef xcbuf = malloc (cbuf_size);
int ret = compress (cbuf, &cbuf_size,
(const Bytef =) xbuf, xbuf_size);
if ((ZOK != ret) || (cbuf_size >= xbuf_size)) {
free (cbuf); return false; }

free (*buf);

*buf = (void =) cbuf;
*buf_size = (size_t) cbuf_size;
return true;

Exercise 14: Add compression support

» Add support for compression to your MHD server.
> Make sure to check the client supports compression.

» You need to link against 1ibz

Part 11

HTTP Requests: Methods with Bodies in Request

Method \ Description \ Body
GET Fetch resource X
HEAD Fetch header only X
PUT Store entity v
POST Accept entity as subordinate v
DELETE Delete resource X
PATCH Change resource v
TRACE Echo request back to client X
CONNECT | Convert connection to tunnel v

100 Continue

Uploading a body may be expensivel HTTP can check if the

HTTP server is willing to handle it first!
POST / HTTP/1.1

Host: grothoff.org
Content-length: 1000
Expect: 100-continue
100 Continue
UPLOAD-BODY

200 Ok

RESPONSE-BODY

100 Continue

Uploading a body may be expensivel HTTP can check if the
HTTP server is willing to handle it first!

POST / HTTP/1.1
Host: grothoff.org
Content-length: 1000
Expect: 100-continue
100 Continue
UPLOAD-BODY

200 Ok

RESPONSE-BODY

POST / HTTP/1.1
Host: grothoff.org
Content-length: 1000
Expect: 100-continue

417 Expectation Failed

ERROR-BODY

MHD and uploads

int
answer_to_connection (void xcls,
struct MHD_Connection *xconnection ,
const char *url,
const char xmethod,
const char xversion ,
const char xupload_data,
size_t xupload_data_size ,
void *xcon_cls)

answer_to_connection will be called repeatedly!

Exercise 15: Handle uploads

> Write an HT TP server with an upload function
» Reject uploads larger than 8 MB

Why do many HTTP servers include such a limitation?

HTTP Basic authentication

#define DENIED "<html><body>Go._away.</body></htmlI>";

char sxpass = NULL;
char xuser
= MHD_basic_auth_get_username_password (connection,
&pass);
if (! authentication_ok (user, pass)) {
response =
MHD _create_response_from_buffer (strlen (DENIED),
(void *) DENIED,
MHD_RESPMEM_PERSISTENT)
return MHD_queue_basic_auth_fail_response (connection,

” ”

my._realm” ,
response);

HTTP Digest authentication (Part 1)

#define MY_OPAQUESTR "11733b200778ce33060f"

char xusername
= MHD_digest_auth_get_username(connection);
if (NULL = username) {
response
= MHD _create_response_from_buffer (strlen (DENIED),
DENIED, MHD_RESPMEM_PERSISTENT);
return MHD_queue_auth_fail_response (connection,

” i

my_realm” ,
MY_OPAQUE.STR,
response ,
MHDNO);

HTTP Digest authentication (Part Il)

int ret = MHD _digest_auth_check (connection, "my.realm”,
username,
password ,
300);
if ((ret = MHD_INVALID_NONCE) ||
(ret = MHDNO))
{

response
= MHD_create_response_from_buffer (strlen (DENIED),
DENIED, MHD_RESPMEM_PERSISTENT);
return MHD_queue_auth_fail_response (connection,
"my_realm” , MY_OPAQUESTR, response,
(ret == MHD_INVALID_.NONCE) ? MHD.YES : MHDNO);

Exercise 16: Digest Authentication

» Add support for digest authentication to your MHD server
» Observe the traffic with wireshark

P> Attempt a replay attack using telnet or nc or netcat

HTTP Upgrade

v

vvyyypy

HTTP includes a mechanism to “upgrade” or switch to
another protocol

The client requests the upgrade using the Connection header
The client offers one or more protocols to upgrade to
The server replies with which protocol it wants to use

Afterwards, the underlying TCP stream is used bi-directionally
for the new protocol

HTTP Upgrade: Web Sockets

GET / HTTP/1.0

Host: example.com

Connection: Upgrade

Upgrade: WebSocket

Sec-WebSocket-Key: HEXCODE==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade
Sec-WebSocket-Accept: HEXCODE=
Sec-WebSocket-Protocol: chat

WEBSOCKET V13.

HTTP Upgrade: HTTP/2

GET / HTTP/1.0
Connection: Upgrade
Upgrade: h2c

HTTP/1.1 101 Switching Protocols
Upgrade: h2c

HTTP2 IN CLEARTEXT.

Virtual hosting

» There are only ~ 4 billion IPv4 addresses
» We may not have one for every Web server
> We also may not have a physical machine for every domain

= Goal: allow one IP to host many HTTP domains

Problem: HTTP server needs to know which domain is requested!

Virtual hosting

» There are only ~ 4 billion IPv4 addresses
» We may not have one for every Web server
> We also may not have a physical machine for every domain

= Goal: allow one IP to host many HTTP domains
Problem: HTTP server needs to know which domain is requested!

Solution: HTTP/1.1 mandates Host: header to indicate domain.

Sample Apache configuration (sites-enabled/)

<VirtualHost my-domain.com:80>
ServerAdmin webmaster@my-comain.com
ServerName "my-comain.com"
DocumentRoot /var/www/my-domain/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
<Directory "/var/www/my-domain">
AllowOverride None
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

HTTP servers can act as proxies

First, enable the HTTP reverse proxy module:
a2enmod mod_proxy

Then you can configure the reverse proxy:

<VirtualHost my-domain.com:80>
ProxyPass /foo/ http://localhost:58080/
ProxyPass /bar/ https://localhost:58081/
ProxyPass /bfh/ https://bfh.ch/
ProxyPass /ws/ ws://localhost:4242/
</VirtualHost>

This is in contrast to an HTTP client using a proxy (such as
Squid, Tor or WWWOFFLE).

Exercise 17: Reverse proxy to MHD

» Configure an Apache server for your site
» Redirect a particular path to your MHD instance
» Redirect another (virtual) domain to your MHD instance

Hint: use /etc/hosts to map the IP address(es) if you do not
have sufficient control over DNS!

X.509 Trust Chains

End-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's) reference
name
Issuer's signature Intermediate Certificate
Q Owner's (CA's) name
sign -
2 Owner's public key

Issuer's (root CA's) reference

name

Issuer's signature

; Root CA's name
{ sign

Root CA's public key

Root CA's signature

self-sign

Root Certificate

TLS 1.3: Full Handshake

Client Server

Connection

Request

34ms --

ClientHello

ServerHello
.....ServerKeyshare

Certificate
Finished

Flnished L S 136ms
Application Data

swg9 - ddl

swg9 - STL

TLS 1.3: Abbreviated Handshake

Client Server

Finished

FANESNEA gz eesn e eeenie 136ms
Application Data

Swg9 - ddl

swg9 - STl

TLS 1.3: 0.5 RTT Handshake

Client Hello
Session Ticket (PSK)

Key share

HTTP GET

Server Hello

Key share

Einished

HTTP Answer

TLS Protocol Stack

HTTP

FTP

SMTP

TLS

Handshake
protocol

Cipher Change
protocol

Alert
protocol

TCP

Record Protocol

Exercise 18: Enable TLS

» Obtain a TLS certificate via the “Let's encrypt” CA (you need
a global DNS name!):

letsencrypt -D DOMAIN.TLD --standalone certonly # or
letsencrypt -D DOMAIN.TLD --standalone run # may work

» Configure your Apache server to use it:

SSLEngine on

SSLProtocol -ALL +TLSv1.2 +TLSvi.1 +TLSv1

SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem
SSLCertificateChainFile /etc/letsencrypt/live/example.com/fullchain.pem
SSLCertificateFile /etc/letsencrypt/live/example.com/cert.pem

» Verify your configuration using

https://www.ssllabs.com/ssltest/ and
https://observatory.mozilla.org/

https://www.ssllabs.com/ssltest/
https://observatory.mozilla.org/

HTTP/2

Key changes:

>
| 2
>
>
>

| 4

HTTP/1 is stateless. HTTP/2 is stateful.

HTTP/1 is human readable. HTTP/2 is binary.

HTTP/1 is in cleartext. HTTP/2 browsers today require TLS.
HTTP/1 is reactive. HTTP/2 servers can be proactive.

HTTP/1 handled requests in order. HTTP /2 allows out of
order.

HTTP/1 is mature. HTTP/2 was rushed to avoid
fragmentation.

HTTP/2 Push

browser

server

browser

server

ptm!

WA

Without Push

With Push

I‘Eq A, ’,"/

e

pu

HOL blocking and prioritization

client
open —

close—'

server

client

open —

high pr

close -

»

server

blocked

Exercise 19: Enable HTTP/2 for Apache

First, enable the HTTP/2 module:
a2enmod http2
Then, enable HTTP/2 for your site:

<VirtualHost *:443>
Protocols h2 http/1.1
ServerAdmin admin@example.com
ServerName examp.e.com

</VirtualHost>

Exercise 20: Putting it all together

» Configure your site for HTTPS

» Enable HTTP/2

P> Reverse proxy to your MHD HTTP instance
» Add Link: headers to add PUSH support:

Link: </assets/styles.css>;rel=preload

Exercise 21: Homework

» Use TLS with MHD directly
» Cross compile MHD for ARM CPUs:

» Install gcc-arm-linux-gnueabi and
binutils-arm-linux-gnueabi or gnueabihf for ARM
systems implementing “hardfloat”

» Configure using ./configure
—--host=arm-linux-gnueabi (hf)

» Implement a RESTful loT sensor using MHD
» Minimize the MHD binary size by setting configure and gcc

options to minimize code size and omit features you do not
require

Part 11

Continuation-Passing Style (CPS)

Continuation-passing style (CPS) is a style of programming in
which control is passed explicitly in the form of a continuation.

» In CPS, functions never return!

P Instead, functions takes an extra argument: an explicit
“continuation”, i.e. a function of one argument.

When the CPS function has computed its result value, it jumps to
the continuation function passing its result value as the argument.

CPS transformation

Programs can always be (automatically) converted to CPS:

» Compilers for functional languages often translate to CPS
» Care must be taken to not use a call stack for the
continuations! (See also: tail call)

» Event loops (libev, libevent, glib, GNUnet-SCHEDULER) use
a style resembling CPS when code waits for inputs

Event loop: minimal example

static void task (void xcls) {
const char stext = cls;
printf ("%s\n", text);

static void start (void xcls) {
GNUNET_SCHEDULER_add_now (&task , "Hello_.world”);
GNUNET_SCHEDULER_add_delayed (TIMEOUT,
&task , "later”);
GNUNET_SCHEDULER_add_read_net (TIMEOUT, FD,
&task , "FD_ready”);
}
int main () {
GNUNET_SCHEDULER_run (&start, NULL);
}

select()

» Traditional API for monitoring multiple file descriptors
> Read man 2 select

Be aware:
» Most portable API, even available on W32
» Always respect FD_SETSIZE when manipulating the sets!
» FD_SETSIZE can be very small on W32 systems

select() and MHD: minimal example

d = MHD_start_.daemon (MHD_USE_ERROR_LOG, 8080,
NULL, NULL, &handle_req, NULL, MHD_OPTION.-END);

while (1) {
fd_set rs, ws, es;
int maxposixs = —1;

FD_ZERO (&rs); FD.ZERO (&ws); FD_ZERO (&es);
MHD_get_fdset (d, &rs, &ws, &es, &maxposixs);

MHD _get_timeout (d, &timeout);

tv.tv_sec = timeout / 1000; /* ms —> s x/

tv.tv_usec = (timeout % 1000) * 1000000ULL; /+x ms —> us
select (maxposixs + 1, &rs, &ws, &es, &tv);

MHD_run (d); // more efficient: MHD_run_from_select ();

poll()

» Instead of using 3 bit-sets, uses an array
» Mostly eliminates restriction on FD_SETSIZE of select()

» Allows more fine-grained control over what events we care
about

poll()

#include <poll.h>

struct pollfd fds[2];

fds [0].fd = STDION_FILENO;

fds [0]. events = POLLIN;

fds[1].fd = STDOUT_FILENO;

fds [1]. events = POLLOUT;

while (1) {
ppoll (fds, 2, NULL /* timeout x/, NULL /x sigmask x/);
if (0 != (fds[0].revents & POLLIN)) do_read ();
if (0 != (fds[1].revents & POLLOUT)) do._write ();

}

MHD and poll()

» MHD can use ppoll() internally:
MHD_USE_POLL_INTERNAL_THREAD

Exercise 22: going beyond the FD_SETSIZE limit

Create an MHD service that sends a slow, infinite stream of “A”s
to each HTTP client, with a delay of 1s between characters:

» Create a linked list with data about all active connections, store a
flag and the connection handle in the list items.

» Add incoming connections to list, use
MHD_create_response_from_callback() with a size of
MHD_SIZE_UNKNOWN and a pointer to your linked list entry.

» When called, if flag set, return “A” once and clear flag. If flag
unset, call MHD_suspend_connection().

» In your main() function, add a loop that once per second goes over
the list, sets all flags and calls MHD_resume_connection() on each
entry. Make sure to use a mutex to access the list!

Exercise 23: going beyond the FD_SETSIZE limit

Create 2k concurrent clients using wget to test your
implementations with select () and ppoll()-based event loops.

» What happens if you go beyond 1021 connections with
select()?

> What happens if you go beyond ~ 1600 connections with
select()?

» What happens if you go beyond 1021 connections with
ppoll()?

» What happens if you go beyond =~ 1600 connections with

ppoll()?
Hint: Read up on listen() and ulimit to explain your findings!

High-performance networking: epoll ()

» Uses a special file descriptor to represent the FD_SETs
» The epoll-FD is readable when anything is ready in these sets
» Sets are manipulated using system call epoll_ct1()
> Read man 3 epoll
Be aware:
» Least portable (Linux/FreeBSD-only)
» Best performing for large event sets: O(1)
» Requires care when using EPOLLET (edge-triggered) flag

epoll() — minimal example

#include <sys/epoll.h>

struct epoll_event evt;
struct epoll_event events_list [LEN];

epfd = epoll_createl (EPOLL.CLOEXEC);
evt.events = EPOLLIN;

evt.data.ptr = NULL;

epoll_ctl (epfd, EPOLL.CTL.ADD, some_fd, &evt))

while (1)

{
ec = epoll_wait (epfd, events_list, LEN, TIMEOUT);
for (unsigned int i=0;i<ec;i++)
handle_event (&events_list[i]);

}

MHD and epoll()

» MHD can use epoll() internally:
MHD_USE_EPOLL_INTERNAL_THREAD

» MHD can give you its epoll() FD: MHD_USE EPOLL, then ask
MHD_get_daemon_info() for MHD_DAEMON_INFO_EPOLL_FD.

Exercise 24: combine select() and epoll()

P> Rewrite your external select-based event loop to use MHD's
epoll() FD

Twister Installation

H PGB PH B H D

@ ®»

apt install libtool 1libltdl-dev autoconf automake libunistring-dev libidnil-dev
git clone git://git.gnunet.org/gnunet

cd gnunet; ./bootstrap

./configure --prefix=$HOME/mc --with-microhttpd=$HOME/mc

git clone git://git.taler.net/exchange

cd exchange ; ./bootstrap

./configure —-prefix=$HOME/mc --with-gnunet=$HOME/mc --with-microhttpd=$HOME/mc
make install ; cd ..

git clone git://git.taler.net/twister

cd twister; ./bootstrap

./configure --prefix=$HOME --with-gnunet=$HOME/mc --with-exchange=$HOME/mc \
--with-microhttpd=$HOME/mc

make install ; cd ..

The Twister HTTP proxy!

TwlAIBr
¢ o @
Server

twister.conf

[twister]

listens here

HTTP_PORT = 8888

forwards there

DESTINATION_BASE_URL = http://localhost:8080

https://git.taler.net/twister.git/

Driving it

twister.conf # CLI
[twister] $ taler-twister -c twister.conf \
Control channel. —--flip-ul=child.one

UNIXPATH = /tmp/taler-service-twister.sock

Driving it (libtalertwister) Tiikr oy

7

#include <taler/taler_twister_service .h> ((ea

-

handle = TALER_TWISTER_connect (CONFIG);

/* lIssue char—flipping command x/

TALER_TWISTER flip_upload (handle,
"child .one" ,
&callback ,
NULL);

TALER_TWISTER_disconnect (handle);

Part IV

RESTful Design

Defined in Roy Fielding's dissertation “Architectural Styles and the
Design of Network-based Software Architectures”. Most of the six
REST constraints that guide system design come from HTTP:

» Client-server architecture
Statelessness
Cacheability

>

>

P Layered system
» Code on demand (optional)
>

Uniform interface

Uniform interface

» Resource identification in requests (use URIs)

» Resource manipulation through representations (use HTTP
methods)

» Self-descriptive messages (use Content-Type)

» Hypermedia as the engine of application state

The last point is rarely supported by real-world REST APIs.

Resource representation

Common formats for resource representation:
» Server-side: (relational?) database (PostgreSQL)
» Client-side: IndexDB

» Network: ASN.1 formats (BER, DER), Protocol Buffers,
XML, JSON

Java Script Object Notation (JSON)

Pros:
> Widely used
» Deterministic encodings available
» Schema-less
Cons:
» Schema-less

» Inefficient compared to binary encodings (solution: BSON!)

Manipulating JSON from C

Do not try to create JSON strings manually in C code.
» String manipulation is notoriously difficult in C
» Memory management becomes a nightmare

» Ensuring syntactic correctness will already be too hard

Solution: 1libjansson
https://jansson.readthedocs.io/en/2.11/

https://jansson.readthedocs.io/en/2.11/

libjansson

#include <jansson.h>

// construct '{" hello”:5, "world”:10}"’

json_t xj = json_pack("{s:i,s:i}",
"hello”, 5,
"world”, 10);

// convert to string

char *s = json_dumps (j, 0);

// parse string

json_t xk = json_loads (s, 0, NULL);

// access field

assert (5 = json_integer_value

(json_object_get (k, "hello”)));

Exercise 25: Use libjansson

Modify your HTTP server to:

» Dynamically generate a JSON-formatted response with a
random number

» Properly set the “Content-Type" header
» Optionally: support body compression

Parsing PUT /POST data with 1ibgnunetjson (1/2)

parse_json (struct MHD_Connection *xconnection, void #xcon_cls

{

const char xupload_data, size_t xupload_data_size

json_t =xjson;
enum GNUNET_JSON_PostResult pr

GNUNET_JSON_post_parser (REQUEST_BUFFER.MAX,

con_cls, upload_data, upload_data_size, &json);

switch (pr) {

case

/*

case

GNUNET_JSON_PR_OUT_OF_MEMORY :
generate "out of memory” internal server error x/
GNUNET_JSON_PR_CONTINUE:

/+ return MHD.YES to MHD to read more from client x/
case GNUNET_JSON_PR_REQUEST_-TOO_LARGE:
/* generate "request too large” x/
case GNUNET_JSON_PR_JSON_INVALID:
/+* generate "invalid json” x/
case GNUNET_JSON_PR_SUCCESS:

GNUNET _assert (NULL != json); /x party on! x/ } }

Parsing PUT /POST data with 1ibgnunetjson (2/2)

Clean up the state in con_cls on connection completion:

static void

handle_mhd_completion_callback (void xcls,
struct MHD_Connection xconnection, void *xcon_cls ,
enum MHD_RequestTerminationCode toe)

{
}

MHD_start_.daemon (...,
MHD_OPTION_NOTIFY_COMPLETED,
&handle_mhd_completion_callback , NULL,

)

GNUNET_JSON_post_parser_cleanup (xcon_cls);

Relational databases

Common relational databases include:
» Sqlite (especially for small systems)
» PostgreSQL
» MariaDB (free software fork of MySQL)
» MySQL (dying due to Oracle acquisition)
We will use PostgreSQL.

postgres $ createuser -s $USER
$USER $ createdb mydb

Database access from C

Each database comes with a C API:

> libsqlite3

> libpq

» libmysql-client
They are all horrible. We will use the 1ibgnunetpq wrapper
around 1libpq which eliminates the worst atrocities.

libgnunetpq by example

#include <libpg—fe.h>
#include <gnunet/libgnunetpq.h>

PGconn xconn = GNUNET_PQ_connect (" postgres:///db—name”);
// use ’'conn’' here, finally:
PQfinish (conn);

libgnunetpq by example

struct GNUNET_PQ_ExecuteStatement es[] = {
GNUNET_PQ_make_execute
("DROP_TABLE_IF _EXISTS _foo .CASCADE;"),
GNUNET_PQ_make_execute
("CREATE_TABLE_IF _NOT_EXISTS _bar._(key_INT4, _val .BYTEA);"
GNUNET_PQ_make_try_execute
("CREATE_INDEX_bar_index -ON_bar._(key);"),
GNUNET_PQ_EXECUTE_STATEMENT_END

b

GNUNET_PQ_exec_statements (conn, es);

libgnunetpq by example

struct GNUNET_PQ_PreparedStatement ps[] = {
GNUNET_PQ_-make_prepare (" foo_.insert”,
"INSERT_INTO_foo_(key, _val)_VALUES.($1,.$2);"
2),
GNUNET_PQ_make_prepare (" foo_select”,
"SELECT_val _FROM_foo .WHERE_key .—=_%1;" ,
1),
GNUNET_PQ_make_prepare (" foo_delete”,
"DELETE_FROM.foo \WHERE_key .—_%$1;" ,
1),
GNUNET_PQ_PREPARED_STATEMENT_END
1

GNUNET_PQ_prepare_statements (conn, ps);

libgnunetpq by example

struct GNUNET_PQ_QueryParam params[] = {
GNUNET_PQ_query_param_uint32 (&key),
GNUNET_PQ_query_param_end

b

GNUNET_PQ_eval_prepared_non_select (session—>conn,
"foo_delete”,
params);

libgnunetpq by example

struct GNUNET_PQ_QueryParam params[] = {
GNUNET_PQ_query_param_uint32 (&key),
GNUNET_PQ_query_param_end
s
char xval; size_t val_size;
struct GNUNET_PQ_ResultSpec rs[] = {
GNUNET_PQ_result_spec_variable_size ("val”,
&val, &val_size),
GNUNET_PQ_result_spec_end

b

GNUNET_PQ_eval_prepared_singleton_select (session—>conn,
"foo_select”,
params,
rs);

/+ use ’'val’' here x/

GNUNET_PQ_cleanup_result (rs);

libgnunetpq by example

struct GNUNET_PQ_QueryParam params[] = {
GNUNET_PQ_query_param_uint32 (&key),
GNUNET_PQ_query_param_end

b

GNUNET_PQ_eval_prepared_multi_select (session—>conn,
"foo_select” ,
params,
&handle_result ,
hr CTX);

libgnunetpq by example

static void
handle_result (void =xcls
PGresult xresult ,
unsigned int num_results) {
for (unsigned int i=0;i<num_results;i++) {
char xval; size_t val_size;
struct GNUNET_PQ_ResultSpec rs[] = {
GNUNET_PQ-_result_spec_variable_size ("val”,
&val , &val_size),
GNUNET_PQ_result_spec_end

}i

GNUNET_PQ_extract_result (result, rs, i);
/* use ’'val’' here x/
GNUNET_PQ-_cleanup_result (rs);

Exercise 26: Implement a backup service

Modify your HTTP server to:
> Store resources in your database given PUT request
» Return resources from database given GET request

» Use HTTP features to optimize caching of GET replies
» Optionally, use 1ibgnunetutil to:

» restrict URIs to Crockford base32-encoded EdDSA public keys

P require signatures by respective private key in separate HTTP
header for PUTs

» support transactional updates by requiring hash of last version
to be supplied on PUT

Exercise 27: evaluate performance

Determine the speed of your solution:
» How many stores can you handle per second?
» How many retrievals can you handle per second?
» How much do these two depend on the size of the data?

Use Curl or libcurl to simulate clients. Make sure you measure the
service and not the client!

Future Work (aka Bachelor’s thesis topics!)

» Improve usability of MHD API
» Hack on GNUnet (HTTP-ng transport, HTTP/3 transport)

» Hack on GNU Taler (sync, auditor API, multi-DB support,
speed)

Exam

P 15 minutes per instructor, instructors randomly assigned

» HTTP protocol, explain features:

» Connection management

» HTTP Methods

» Techniques for performance optimization
» Security features

» HTTP/2vs. HTTP/1.x

» Modern Internet service architecture (proxies, REST, etc.)

» Your project / implementation

RTFL

Copyright (C) 2012-2018 Christian Grothoff

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

