The Hyper Text Transfer Protocol (HTTP)

Christian Grothoff

8.6.2018

Agenda

The Hyper Text Transfer Protocol (HTTP)

» Initially standardized in RFC 2616

> HTTP/0.9 (1990), HTTP/1.0 (1996), HTTP/1.1 (1999),
HTTP/2 (2016)

» Runs over TCP (port 80) or as HTTPS over TLS (port 443)

Uniform Resource Locators (URLs)

http://www.example.com:80/path?key=value#anchor

PROTOCOL://HOST:PORT/PATH?QUERY#FRAGMENT

Anatomy of an HTTP request

The HTTP Request
Establish Send Send
Server Connection First Byte Last Byte
Activity
ISP nd (KB)
Client
AV png Intial Intial HTTP Receive Receive
Lookup Connection Request First Byte Last Byte

HTTP 1.x Request Format

GET / HTTP/1.0
Keyl: valuel
Key2: value2
Key3: value3
value3 may be continued here
Key4: valued

» Each line SHOULD be terminated by CRLF, but MAY be
terminated only by CR or LF.

» The header ends with an empty line by itself.
» HTTP does not specify a maximum header length

HTTP Headers

HTTP headers are used in many ways:
» control the connection (Keep-alive)
» control caching

» provide meta data (content-length, content-type,
content-encoding)

» request and provide authentication
HTTP knows four types of headers:
» General header: can be used in both request and response
» Request header: only applicable to request messages
P> Response header: only applicable to response messages

> Entity header: define meta-information about the body

Exercise 1: HTTP/1.0, GET

$ telnet grothoff.org 80
GET / HTTP/1.0

HTTP Methods (or verbs)

GET is just one HTTP method. Other common HTTP/1.0
methods include:

> HEAD
PUT
POST
OPTIONS
PUT
DELETE
TRACE
CONNECT

vVvvyVvVvVvVvyYyy

HTTP Methods: Safety and Idempotence

Method \ Description Idempotent \ Safe

GET Fetch resource v v

HEAD Fetch header only v v

PUT Store entity v X

POST Accept entity as subordinate X X

OPTIONS | Return supported HTTP meth- v v
ods

DELETE Delete resource

PATCH Change resource

IR
NS

TRACE Echo request back to client

CONNECT| Convert connection to tunnel

Exercise 2: HTTP/1.0 HEAD

$ telnet grothoff.org 80
HEAD / HTTP/1.0

» What happens if you use "HTTP/1.1" instead of
“HTTP/1.0"7

HTTP Responses

A HTTP response generally consists of three parts:

1. HTTP Status code line (version, numeric status code, human
readable status code)

2. HTTP (response) headers, followed by empty line
3. HTTP response body

HTTP 1.x Response Format

HTTP/1.1 200 0K

Server: some advertisement

Date: Sun, 31 Aug 1999 24:00:00 GMT
Content-Type: text/html
Content-Length: 11

Connection: close

Hello World

All of the above headers are technically optional.

HTTP Status Codes

The numeric range of the HT TP status code is already meaningful:

o b=

Informational 1xx: Indicate a provisional response

Successful 2xx: Indicate that the client request was successful
Redirection 3xx: Indicates that further action is needed

Client Error 4xx Indicates when the client seems to have erred

Internal Server Error 5xx: Indicates cases in which the server
is aware that it has erred

Common HTTP Status Codes

100
200
301
304
400
401
402
403
404
500

Continue

Ok

Moved Permanently
Not Modified

Bad Request
Authentication Required
Payment Required
Forbidden

Not Found

Internal Server Error

Exercise 3: HTTP/1.1

$ telnet grothoff.org 80
GET / HTTP/1.1
Host: grothoff.org

Multiple HTTP requests

client server
open —+—

close 4=
open ——

close +~
open -

close 4~
Y \/

Traditional (HTTP/1.0)

Multiple HTTP requests

client server client server
open — open —

close 4=
open ——

close +~
open ——

close 4~
Y \ 4 Y

Traditional (HTTP/1.0) With Keep-Alive (HTTP/1.1)

\
AYAYAY.

close—‘

Exercise 4: HTTP/1.1, Connection: close

GET / HTTP/1.1
Host: grothoff.org
Connection: close

Exercise 5: HTTP /1.0, Connection: Keap-alive

GET / HTTP/1.0
Connection: Keep-alive

HTTP/1.1 pipelining
no pipelining pipelining

client server client server
open — open —

E—
/

close —

AYAYAY.

<
<
<

close =

<
<

HTTP/1.1 Response length

» Content-Length header defines body length

> Content-encoding: chunked provides alternative if length
not known

» Otherwise, no keep-alive possible (Connection: close
header implied)

Content-encoding: chunked

RFC 2616, section 3.6.1 defines chunked encoding:

Chunked—Body = xchunk
last —chunk
trailer
CRLF
chunk = chunk—size [chunk—extension] CRLF
chunk—data CRLF
chunk—size = 1xHEX
last —chunk = 1%("0") [chunk—extension] CRLF
chunk—extension= *(";" chunk—ext—name ["=" chunk—ext—val]
chunk—ext—name = token
chunk—ext—val = token | quoted—string
chunk—data = chunk—size (OCTET)

trailer = «(entity —header CRLF)

Long polling

HTTP may generate a response incrementally,
With or without chunked encoding

Request — Response = Request — Response, [wait, Response]*,
fin.

HT TP Benchmarking

Web performance is complex:

» number of requests required per Web page in total
parallel TCP connections used by browser
static content vs. dynamic content generation
impact of caching, proxies, network speed
HTTP vs. HTTPS

Use of “Connection: Keep-alive”

vVvYyyvyy

» Browser HTML parsing and rendering

We will focus on a few simple tools for the server.

Exercise 6: siege

apt-get install siege
$ siege —t5S http://grothoff.org/

Transactions: 876 hits
Availability: 100.00 %
Elapsed time: 4.64 secs

Data transferred: 0.17 MB
Response time: 0.01 secs
Transaction rate: 188.79 trans/sec
Throughput : 0.04 MB/sec
Concurrency: 2.22

Successful transactions: 878
Failed transactions: 0
Longest transaction: 0.05

Shortest transaction: 0.00

Exercise 7: Apache Benchmark (ab)

apt-get install apache2-utils
$ ab —c 25 —t5 http://grothoff.org/

Exercise 7: Apache Benchmark (ab)

apt-get install apache2-utils
$ ab —c 25 —t5 http://grothoff.org/

Time taken for tests: 5.000 seconds

Complete requests: 14096

Failed requests: 0

Non-2xx responses: 14096

Total transferred: 5300096 bytes

HTML transferred: 2607760 bytes

Requests per second: 2819.09 [#/sec] (mean)

Time per request: 8.868 [ms] (mean)

Time per request: 0.355 [ms] (mean, across all concurrent requests)

Transfer rate: 1035.14 [Kbytes/sec] received

Benchmarking

Lesson learned:
» HTTP servers are very fast
» You may be benchmarking the client
» You may be benchmarking the bandwidth
» You may be benchmarking the network latency

HTTP Caching

HTTP response headers control how long a resource is valid:
» Cache-control: max-age=3600
» Expires: Mon, 31 Aug 2020 00:00:00 GMT
> ETag: "727285929572e8a" — assign unique ID to resource

HTTP request headers can be used to inquire if a resource
changed:

» If-Modified-Since: Mon, 31 Aug 2000 00:00:00 GMT
> If-None-Match: "727285929572e8a"

HTTP Methods & Caching

Method ‘ Description Cacheable
GET Fetch resource

HEAD Fetch header only

PUT Store entity

POST Accept entity as subordinate

DELETE Delete resource

PATCH Change resource

TRACE Echo request back to client
CONNECT | Convert connection to tunnel

xxxx%xx\

(*) Only if HTTP response includes explicit freshness information.

Cookies

HTTP is a “stateless” protocol. Cookies are a mechanism to add
state.

Server to client:

Set-Cookie: key=value;0PTIONS

Client to server:

Cookie: key=value

Cookie options

v

Expires=DATE — if not set, cookies expire at the end of the
session

Domain=DOMAIN — for which (sub)domain does the cookie
apply

Path=PATH — for which URL paths should the cookie be
sent

Secure — only send cookie over HTTPS
HttpOnly — only send cookie over HTTP

SameSite=Strict — do not send along cross-site requests

Range queries

HTTP supports incremental downloads:

GET / HTTP/1.1
Host: grothoff.org
Content-range: 40-42/bytes

206 Partial Content
Content-length: 3
Accept-ranges: bytes
Content-range: 40-42/64

HTTP/1.x supports body compression

GET / HTTP/1.0
Accept-encoding: gzip,deflate

200 OK
Content-encoding: gzip
Content-length: 42

The content length is that of the compressed body.

HTTP Requests: Methods with Bodies in Request

Method \ Description \ Body
GET Fetch resource X
HEAD Fetch header only X
PUT Store entity v
POST Accept entity as subordinate v
DELETE Delete resource X
PATCH Change resource v
TRACE Echo request back to client X
CONNECT | Convert connection to tunnel v

100 Continue

Uploading a body may be expensivel HTTP can check if the

HTTP server is willing to handle it first!
POST / HTTP/1.1

Host: grothoff.org
Content-length: 1000
Expect: 100-continue
100 Continue
UPLOAD-BODY

200 Ok

RESPONSE-BODY

100 Continue

Uploading a body may be expensivel HTTP can check if the
HTTP server is willing to handle it first!

POST / HTTP/1.1
Host: grothoff.org
Content-length: 1000
Expect: 100-continue
100 Continue
UPLOAD-BODY

200 Ok

RESPONSE-BODY

POST / HTTP/1.1
Host: grothoff.org
Content-length: 1000
Expect: 100-continue

417 Expectation Failed

ERROR-BODY

HTTP Upgrade

v

vvyyypy

HTTP includes a mechanism to “upgrade” or switch to
another protocol

The client requests the upgrade using the Connection header
The client offers one or more protocols to upgrade to
The server replies with which protocol it wants to use

Afterwards, the underlying TCP stream is used bi-directionally
for the new protocol

HTTP Upgrade: Web Sockets

GET / HTTP/1.0

Host: example.com

Connection: Upgrade

Upgrade: WebSocket

Sec-WebSocket-Key: HEXCODE==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade
Sec-WebSocket-Accept: HEXCODE=
Sec-WebSocket-Protocol: chat

WEBSOCKET V13.

HTTP Upgrade: HTTP/2

GET / HTTP/1.0
Connection: Upgrade
Upgrade: h2c

HTTP/1.1 101 Switching Protocols
Upgrade: h2c

HTTP2 IN CLEARTEXT.

Virtual hosting

» There are only ~ 4 billion IPv4 addresses
» We may not have one for every Web server
> We also may not have a physical machine for every domain

= Goal: allow one IP to host many HTTP domains

Problem: HTTP server needs to know which domain is requested!

Virtual hosting

» There are only ~ 4 billion IPv4 addresses
» We may not have one for every Web server
> We also may not have a physical machine for every domain

= Goal: allow one IP to host many HTTP domains
Problem: HTTP server needs to know which domain is requested!

Solution: HTTP/1.1 mandates Host: header to indicate domain.

Sample Apache configuration (sites-enabled/)

<VirtualHost my-domain.com:80>
ServerAdmin webmaster@my-comain.com
ServerName "my-comain.com"
DocumentRoot /var/www/my-domain/
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>
<Directory "/var/www/my-domain">
AllowOverride None
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

HTTP servers can act as proxies

This is called a reverse proxy:

<VirtualHost my-domain.com:80>
ProxyPass /foo/ http://localhost:58080/
ProxyPass /bar/ https://localhost:58081/
ProxyPass /bfh/ https://bfh.ch/
ProxyPass /ws/ ws://localhost:4242/
</VirtualHost>

This is in contrast to an HTTP client using a proxy (such as
Squid, Tor or WWWOFFLE).

Exercise 8: Reverse proxy

» Configure an Apache server for your site
» Redirect a particular path to another HTTP server
» Redirect another (virtual) domain to your another HTTP

Server

Hint: use /etc/hosts to map the IP address(es) if you do not
have sufficient control over DNS!

X.509 Trust Chains

End-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's) reference
name
Issuer's signature Intermediate Certificate
Q Owner's (CA's) name
sign -
2 Owner's public key

Issuer's (root CA's) reference

name

Issuer's signature

; Root CA's name
{ sign

Root CA's public key

Root CA's signature

self-sign

Root Certificate

TLS 1.3: Full Handshake

Client Server

Connection

Request

34ms --

ClientHello

ServerHello
.....ServerKeyshare

Certificate
Finished

Flnished L S 136ms
Application Data

swg9 - ddl

swg9 - STL

TLS 1.3: Abbreviated Handshake

Client Server

Finished

FANESNEA gz eesn e eeenie 136ms
Application Data

Swg9 - ddl

swg9 - STl

TLS 1.3: 0.5 RTT Handshake

Client Hello
Session Ticket (PSK)

Key share

HTTP GET

Server Hello

Key share

Einished

HTTP Answer

TLS Protocol Stack

HTTP

FTP

SMTP

TLS

Handshake
protocol

Cipher Change
protocol

Alert
protocol

TCP

Record Protocol

Exercise 9: Enable TLS

» Obtain a TLS certificate via the “Let's encrypt” CA (you need
a global DNS name!):

letsencrypt -D DOMAIN.TLD --standalone certonly # or
letsencrypt -D DOMAIN.TLD --standalone run # may work

» Configure your Apache server to use it:

SSLEngine on

SSLProtocol -ALL +TLSv1.2 +TLSvi.1 +TLSv1

SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem
SSLCertificateChainFile /etc/letsencrypt/live/example.com/fullchain.pem
SSLCertificateFile /etc/letsencrypt/live/example.com/cert.pem

» Verify your configuration using

https://www.ssllabs.com/ssltest/ and
https://observatory.mozilla.org/

https://www.ssllabs.com/ssltest/
https://observatory.mozilla.org/

HTTP/2

Key changes:

>
| 2
>
>
>

| 4

HTTP/1 is stateless. HTTP/2 is stateful.

HTTP/1 is human readable. HTTP/2 is binary.

HTTP/1 is in cleartext. HTTP/2 browsers today require TLS.
HTTP/1 is reactive. HTTP/2 servers can be proactive.

HTTP/1 handled requests in order. HTTP /2 allows out of
order.

HTTP/1 is mature. HTTP/2 was rushed to avoid
fragmentation.

HTTP/2 Push

browser

server

browser

server

ptm!

WA

Without Push

With Push

I‘Eq A, ’,"/

e

pu

HOL blocking and prioritization

client
open —

close—'

server

client

open —

high pr

close -

»

server

blocked

Exercise 10: Enable HTTP/2 for Apache

First, enable the HTTP/2 module:
a2enmod http2
Then, enable HTTP/2 for your site:

<VirtualHost *:443>
Protocols h2 http/1.1
ServerAdmin admin@example.com
ServerName examp.e.com

</VirtualHost>

Exercise 11: Putting it all together

» Configure your site for HTTPS

» Enable HTTP/2

» Reverse proxy to another HTTP server

» Add Link: headers to add PUSH support:

Link: </assets/styles.css>;rel=preload

RTFL

Copyright (C) 2012-2018 Christian Grothoff

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

