UDP Socket Programming

Christian Grothoff

Berner Fachhochschule

May 4, 2018

Today: UDP Socket Programming and select ()

Learning objectives:
» More socket APIs: recvfrom(), SO_BROADCAST, select ()
» Practice UDP

Programming objective: implement a group chat application.

» »
./chat 6112 127.0.0.1 700 ./chat 7000 127.0.0.1 6112
hallo! 127.0.0.1:6112 >> hallo!
127.0.0.1:7000 >> wie%gehts” wie gehts?

Creating a socket

#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

Use AF_INET or AF_INET6 for domain.
Today, we will discuss the type being SOCK_DGRAM.
We need to set protocol to TPPROTO_UDP or O.

Configuring the socket

Tell the kernel that we do want to enable broadcasts:

const int one = 1;
setsockopt (sock,
SOL_SOCKET,
SO_BROADCAST,
(char *) &one,
sizeof (ome));

Bind to a port

struct sockaddr_in local;

local.sin_family = AF_INET;
local.sin_port htons (LOCALPORT) ;
local.sin_addr.s_addr INADDR_ANY;

bind (sock,
(struct sockaddr *) &local,
sizeof (local));

Waiting for data

How can we tell when data is available?

> Call read() on the socket
» read() blocks until data is ready
> Can only watch a single socket per process/thread,
» Cannot even react to keyboard input

» Use traditional event loop like select ()
» Put all file descriptors to monitor into a set
> Pass select() the set
» Once something happens, select() returns a set with those FDs that are
ready

» Use non-portable edge-triggered event loop like “epoll”

A select () loop

while(1) {
fd_set rfds;

FD_ZERO (&rfds);

FD_SET (STDIN_FILENO, &rfds);

FD_SET (sock, &rfds);

maxfd = MAX(sock, STDIN_FILENO);

select (maxfd+1, &rfd, NULL, NULL, NULL);

if (FD_ISSET (sock, &rfds)) { ... };

if (FD_ISSET (STDIN_FILENO, &rfds)) { ... };

Receiving data

char buf [65536];
struct sockaddr_storage from;
socklen_t slen = sizeof (from);

recvfrom (sock,
buf,
sizeof (buf),
0,
(struct sockaddr *) &from,
&slen) ;

Transmitting data

struct sockaddr_in dest;

sendto (sock,
msg,
strlen (msg) + 1,
0,
(const struct sockaddr *) &dest,
sizeof (dest));

UDP group chat

» Start with a 1:1 chat
» Pass IP address and port via command-line
» Use broadcast for group chats

» Optional: ensure transmission is in UTF-8

UDP multicast: sending

struct in_addr 1i;
struct sockaddr_in sa;
sa.sin_family = AF_INET;
sa.sin_addr.s_addr = inet_addr("226.42.62.42");
sa.sin_port = htons(PORT);
li.s_addr = inet_addr("192.168.0.52");
/* Specify interface to use for multicast */
setsockopt (sd, IPPROTO_IP, IP_MULTICAST_IF,
(char *)&li, sizeof(1li));
/* Transmit to multicast address */
sendto (sock, data, datalen, O,
(struct sockaddr*)&sa, sizeof(sa));

UDP multicast: receiving

struct ip_mreq group;
int reuse = 1;
group.imr_multiaddr.s_addr
= inet_addr("226.42.62.42");
group.imr_interface.s_addr
= inet_addr("192.168.0.52");
/* allow multiple applications to bind */
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR,
(char *)&reuse, sizeof (reuse));
bind (sd, ...); /* can use IP=0 %/
/* join group */
setsockopt (sd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(char *)&group, sizeof(group));
/* receive */
read (sd, databuf, datalen);

